Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Miinchen l] : "

Ubungswoche 11 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Dateien T|.|T|

¢ Genaue Implementierung von Dateimechanismen kann variieren,z.B.:
— Windows: name.endung; interpretierte Endungen (.exe, .ixt)
— UNIX: freie Benennung; Endungen per default nicht interpretiert

e Strukturierung:

- Unstrukturiert: Folge von Bytes (Windows, UNIX)

- Sequenzen von Eintragen: Eintrage fester GréBe und Struktur (i.d.R. nicht mehr genutzt)

- sortierte Baumstruktur: Eintrédge variabler Gré3e; fir Verwaltung groBer Datenmengen (BS
in GroBBrechnern)

¢ Einige unterstiitze Typen:

Directories (d), Files (-: files, hard links)(l: symbolic links), Character Special Files (c), Block
Special Files (b)

in Commern. 33,,,50[: reberr Permission e bei Ausgoibe mi, L¢—le”

Mario Delic | Tutorlibung | Ubungswoche 11 2

Dateien

eHard & symbolic links:
- Hard link: verweist direkt auf die selbe i-node wie link target

- Symbolic link: verweist per Dateipfad auf einen Dateieintrag im FS

C's directory
SOML,P'Q

/

/

Owner=C
Count =1

l
O

B's directory C's directory

LQS¥

\

il
\/

Owner=C
Count=2

|
O

Somefate

B's directory

(2sf

\

\
\

Owner=C

Count =1

l
O

@ (n swnelile L1 S{? — (b) — unlink omelile —=(c)

Mario Delic | Tutorlibung | Ubungswoche 11

=
-$:{Tﬂbd(l.(

L—;. U/'(I‘llk :’\ UUU(u,:'ly [Uo] zu™ L‘é.\‘r‘lvn J("“iz’(

Implementierung

¢ Contiguous Allocation:
- Datei wird als zusammenhé&ngende Folge von Blécken auf der Festplatte verwaltet
(File A) (File C) (File E)

——

s al r 2l
|

[S—— [—
File B 5 Free blocks

- Vorteil: Sehr simpel; Nachteil: Fragmentierung (L6cher im Speicher)
- zu finden bei ROMs (CDs, DVDs, etc.)

Mario Delic | Tutorlibung | Ubungswoche 11

TUTI

Implementierung TUTI

¢ Linked List Allocation:
- Die durch die Datei belegten Blécke werden in einer verketteten Liste verwaltet
- Das erste Wort innerhalb des Blocks wird als Zeiger auf den nachsten Block verwendet

- Vorteil: Nahezu keine Fragmentierung (lediglich letzer Block); Nachteil: langsam,
BlocklgréBBe =|= 2er-Potenz (wegen Anfangspointer))
- Lésung: Seperate Tabelle speichert die Allokation der Blécke

— FAT (File Allocation Table)

Mario Delic | Tutorlibung | Ubungswoche 11 5

Implementierung

ile A starts here

ile B starts here

0
1
2 10 <]
31 11
4 7 ~
5
6 3
7 2 Y=
8
9

12 A
11 14
1 -1 =
1
14 -1
15

A L’l‘zl Q,/[0/4a
B §, 341,14

—— Unused block

Quelle: Tanenbaum/Bos

Mario Delic | Tutorlibung | Ubungswoche 11

Implementierung

¢ index-nodes (i-node):

- Jede Datei wird reprasentiert durch eine i-node

- Enthalt Attribute und Belegte Blécke

Tl

- Vorteil: Muss nur fir gedffnete Dateien geladen werden; Nachteil: theoretisch begrenzte

Bt 20

DateigréfBe Bt
- Lésung: Indirect Verweisel auf weitere Blockadressen|bei bedarf
Pret x0 | G, g, |— =0y o

aHabuder Y ; 5 S

. / : .S?ngl—lA g

Diredd A4 ~— ¥

., - ek 2, D §i

M—_ Sincle-l g

Q‘n:‘# A2 Do-bl(.vl % I R

Sijjl(-/n,j .)

Double-1nd,

Trie-ind - ——ablrl. 7 ; S"nj(2-

Mario Delic | Tutorlibung | Ubungswoche 11

D;r‘col 2

Aufgabe 2 TUTI

a) Ein Computer mit 32-bit breiten virtuellen Adressen benutzt eine zweistufige

Seitentabelle zur Adressiibersetzung.
Eine virtuelle Adresse bestehe aus 9 Bits fiir die erste Stufe, 11 Bits fiir die zweite

Stufe sowie einem Offset. Wie sieht die Adresse aus?

]
Mo e S

7 %L
b) Wie grof3 sind die Seiten? A
nets ¥ B> LEB

c) Aus wi%yielen Seiten besteht der virtuelle Adressraum?
4 o 20 9 AT > <

Pz z 25 e 7 = =

—_—

2 —

Mario Delic | Tutorlibung | Ubungswoche 11 8

Auszug aus dem Intel-Manual:
32-bit Paging mit 4 KiB Pages = |, ges" P"ﬂ';ﬁ

Linear Address
31 22 21 12 11 0

I Directary [Table Offset |

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

PTE S
20

Y

PDE with PS=0

20

32
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
Mario Delic | Tutorlibung | Ubungswoche 11

Auszug aus dem Intel-Manual:

32-bit Paging mit 4 MiB Pages

Linear Address

31 22 21 0
| Directory | Offset |
22 4-MByte Page
10 _Page Directory Physical Address
»| PDE with PS=1 b
18
32
CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

Mario Delic | Tutorlibung | Ubungswoche 11

10

Linear Address
47 39 38 30 29 21 20 12 11 0
| PmL4 | Directory Ptr Directory Taple [Offset |
]
/@ 1o 4-KByte Page
» Physical Addr
PTE r-
Page-Directory- PDE with PS=0 - 40
Pointer Table 40 Page Table
A Page-Directory
PDPTE /40 5 4) 36
9 A =
k 36 2 =3
40 G L . 1T 2
L PMLE D '
— —542 g:B
-
40 o 6?/10!'137”*1 9feuhe/"
CR3]0;,- gic Pag Tohlels)

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Mario Delic | Tutorlibung | Ubungswoche 11

Aufgabe 2 TUTI

d) Wie grof3 sind die Seitentabellen jeweils, wenn flr die GroBe eines Eintrags
vereinfachend 8 Byte angenommen werden?

e) Nehmen wir an, wir verwenden statt der zweistufigen Ubersetzung eine einstufige, bei
der die erste Stufe 20-bit breite Seitennummern verwendet. Wie viel Speicher kann
adressiert werden? Kann mittels der zweistufigen Ubersetzung mehr Speicher
adressiert werden?

Mario Delic | Tutorlibung | Ubungswoche 11 12

Aufgabe 2 Tm

d) Wie grof3 sind die Seitentabellen jeweils, wenn flr die GroBe eines Eintrags
vereinfachend 8 (23) Byte angenommen werden?

Tabelle der Ersten Stufe: 2° Eintrage 2° E'?r{:f;g = 2'2 Bytes = 4 KiB

Tabelle der Zweiten Stufe: 2'" Eintrage 23 E?ﬁf;g = 2'% Bytes = 16 KiB (pro Tabelle!)

Summef der Tabellen der Zweiten Stufe: 24 21 4 29 Tabellen = 22° Bytes = 8 MiB

Insgesamt also: 222 Bytes + 2'3 Bytes = 4 KiB + 8 MiB

e) Nehmen wir eine einstufige Tabelle, die 20-bit breite Seitennummern verwendet. Kann
mittels der zweistufigen (9+11) Ubersetzung mehr Speicher adressiert werden?

Mario Delic | Tutorlibung | Ubungswoche 11 13

Aufgabe 2 Tm

d) Wie grof3 sind die Seitentabellen jeweils, wenn flr die GroBe eines Eintrags
vereinfachend 8 (23) Byte angenommen werden?

Tabelle der Ersten Stufe: 2° Eintrage 2° E'?r{:f;‘g = 2'2 Bytes = 4 KiB

Tabelle der Zweiten Stufe: 2'" Eintrage 23 E?ﬁfasg = 2'% Bytes = 16 KiB (pro Tabelle!)

Summer der Tabellen der Zweiten Stufe: 24 21 4 29 Tabellen = 22° Bytes = 8 MiB

&
Insgesamt also: 22% Bytes + 2'® Bytes = 4 KiB + 8 MiB

e) Nehmen wir eine einstufige Tabelle, die 20-bit breite Seitennummern verwendet. Kann
mittels der zweistufigen (9+11) Ubersetzung mehr Speicher adressiert werden?

e Einstufig = 220 x 212 = 2%2

o Zweistufig = 29 x 211 x 212 = 232

Es kann gleich viel Speicher adressiert werden!

Mario Delic | Tutorlibung | Ubungswoche 11 14

Aufgabe 3 Tum
HauptspeichergréBe: 64 KiB; 32 Seiten; 8 Kacheln.

lechdn= 2= 357

a) Wie Iautglt gie héchste virtuelle Speiclleradresse ?
= | —5/ A5 &)
Pa 2 14 /Z{/Z 3: »£2

= (O D\ o= (/((O)
[ﬁfEdVEOT @)J - -63— — = Sasf'ljc‘\ 2

AL @ = sken cu LB 276 - 2 -
/“’;T?;)\u - .. ’;

o 55 e o 4 3 va- (5-5%,6)
2) Gilen= 22 Serten — o} b - (
-5+ for p e 4
b) Wie viele Bit sind fiir die virtuelle und physische Adresse jeweils breit? ve=(5,43)
48’5/"’
—_—

Mario Delic | Tutorlibung | Ubungswoche 11 15

Aufgabe 3 Tum
HauptspeichergréBe: 64 KiB; 32 Seiten; 8 Kacheln.

a)/Wie lautet die hdchste virtuelle Speicheradresse?

218 Bytes / 2% Kacheln = 2" Bytes pro Kachel — 2'° Bytes pro Seite

213 Bytes pro Seite * 2° Seiten = 2'8 Bytes (im virtueller Speicher)

< Hochstes Offset ist immer Bytes/1, da man bei Byte 0x00 startet: 218 — 1 = 262.144 — 1
=262.143

) Wie viele Bit sind fiir die virtuélle und physische Adresse jeweils breit? 480 Foxhr Sler /
) £ md{w: Cf""jf})"4 -

Mario Delic | Tutorlibung | Ubungswoche 11 16

Aufgabe 3 Tum
HauptspeichergréBe: 64 KiB; 32 Seiten; 8 Kacheln.

a) Wie lautet die hdchste virtuelle Speicheradresse?

216 Bytes / 2% Kacheln = 2'® Bytes pro Kachel — 2'° Bytes pro Seite

213 Bytes pro Seite * 2° Seiten = 2'8 Bytes (im virtueller Speicher)

< Héchstes Offset ist immer Bytes-1, da man bei Byte 0x00 startet: 218 — 1 = 262.144 — 1
=262.143

b) Wie viele Bit sind fiir die virtuelle und physische Adresse jeweils breit?

Physische Adresse: 64 KiB = 216 adressierbare Bytes = 16 bit.

Alternativ: 23 Kacheln = 3 bits Kachel; 2'% Bytes pro Kachel/Seite = 13 bits Offset

— 16 bit Adresse L

Virtuelle Adresse: 2° Seiten = $ bits Seite; 2'3 Bytes pro Kachel/Seite = 13 bits Offset
— 18 bit Adresse

Mario Delic | Tutorlibung | Ubungswoche 11 17

QA zg
’)J5: 02000 & @0 | ?

Aufgabe 3 orto | 2°

o2’
HauptspeichergréBe: 64 KiB; 32 Seiten (2°); 8 Kacheln (29).

c) Ermitteln Sie die jeweils angesprochene physische Adresse. Benutzen Sie die Pagetable
aus Abbildung 1.

Virtuelle Adresse fo) Seiten Offset Kachel Physische Adresse
v ——A———ummer nummer (0 . 07000)
0x00559 = - (D 0404 o/ 10041 O Cxss§ O OO+ 0+659 = Ch G539

0x1208c = = 04 0o 0000 1000 4406 | 3 Oxdc >
0x16001 = "Oﬂ 0470 G®Oo 0000 O [41=B A

U
0x0a777 = 0404 |0 014N 0444 0447 | 5 ewi72 PF
0x13992 = 100414 44 4DA 0040 G OxA832 F (opd <es 43 71 .

0T« 02800 + 0« 9 = e O
(Oelyec =42 L+ oud >@0,§oo§f

Mario Delic | Tutorlibung | Ubungswoche 11 18

Aufgabe 3 TUTI
HauptspeichergréBe: 64 KiB; 32 Seiten (2°); 8 Kacheln (29).

d) Ermitteln Sie die jeweils angesprochene virtuelle Adresse. Benutzen Sie die Pagetable
aus Abbildung 1.

Physgische Adresse/ﬁ) Kachel Offset Seiten Virtuelle Adresse
2 _ 22 ~_ hummer nummer
0x2000 = 007)e o060 600 cpoo A o0 i O«A - OO = Cv2000
0x8235 = 10 |c) 00 A0 cout Q04 U 0x727 b= O A6 23S

Mario Delic | Tutorlibung | Ubungswoche 11 19

Aufgabe 4 Pq = O—V bdoe d)(/Jéﬂ/ m

Segmentierung s po= S < Addr — [55‘ + O A4000)

a) Erweitern Sie das Bild, sodass ein Zugriff auf gs:0x1000 auf einen Zugriff auf 0x40000
Ubersetzt wird.

Segmentregister Global Descriptor Table (% 4000 - o 70 = Ofm
cs ox08 Basis Lange Zugriff Typ
ss 0x30 oxe | 0x10300 | ©x0e@00 Kernel | Daten (g3 O A0+ L/)
ds 0x28 — 0x8 0x10000 0x03000 Kernel Code v
es 0x10 — ex10 | @x20000 0x00800 | Benutzer | Code
fs ox18 —T = ox18 Ox40000 @x13700 Kernel Daten
gs | (O« C) Dex20 |0 R000 |0, L0/ Kernel | Daten
x28 | @x80000 0x22000 Benutzer | Daten

Mario Delic | Tutorlibung | Ubungswoche 11 20

Aufgabe 4 Tm

Segmentierung

a) Erweitern Sie das Bild oben, sodass ein Zugriff auf gs:0x1000 auf einen Zugriff auf
0x40000 Gbersetzt wird.

Segmentregister Global Descriptor Table
—> 044000+ O«Aol= OxA001

cs Cs 07 " Bagis Lange Zugrift Typ
ss ox30 exe | 0x10300 0x0e000 Kernel Daten
ds 0x28 S oxs [@xm@@@) 0x03000 Kernel Code
es —ux10 @@ 0x00800_ | Benutzer Code 0e: Qed 441
fs 0x18 ox18 | 0x40000 | ©x13700 Kernel ~|—Baten | @o@ @
gs 0410 0x20 | Que {00 | O (000 Kernel Daten
0x28 | 0x80000 0x22000 Benutzer | Daten

Mario Delic | Tutorlibung | Ubungswoche 11 21

Aufgabe 4

Segmentierung

b) Ldsen Sie die folgenden Speicherzugriffe auf.
Falls nicht anders angegeben erfolgen die Zugriffe lediglich mit Nutzerrechten.

Lesezugriff auf ss: 0: K ZCJ an CH
Lesezugriff mit Kernelrechten auf cs:0x101: O* ,(0/[0 A
Schreibzugriff auf es: 0x1111: &%{@Q Lf

7

Mario Delic | Tutorlibung | Ubungswoche 11

