
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 11

Dateien

• Genaue Implementierung von Dateimechanismen kann variieren,z.B.:
↪→ Windows: name.endung; interpretierte Endungen (.exe, .txt)
↪→ UNIX: freie Benennung; Endungen per default nicht interpretiert

• Strukturierung:
- Unstrukturiert: Folge von Bytes (Windows, UNIX)
- Sequenzen von Einträgen: Einträge fester Größe und Struktur (i.d.R. nicht mehr genutzt)
- sortierte Baumstruktur: Einträge variabler Größe; für Verwaltung großer Datenmengen (BS
in Großrechnern)

• Einige unterstütze Typen:
Directories (d), Files (-: files, hard links)(l: symbolic links), Character Special Files (c), Block
Special Files (b)

Mario Delic | Tutorübung | Übungswoche 11 2

Dateien

•Hard & symbolic links:
- Hard link: verweist direkt auf die selbe i-node wie link target
- Symbolic link: verweist per Dateipfad auf einen Dateieintrag im FS

Mario Delic | Tutorübung | Übungswoche 11 3

Implementierung

• Contiguous Allocation:

- Datei wird als zusammenhängende Folge von Blöcken auf der Festplatte verwaltet

- Vorteil: Sehr simpel; Nachteil: Fragmentierung (Löcher im Speicher)
- zu finden bei ROMs (CDs, DVDs, etc.)

Mario Delic | Tutorübung | Übungswoche 11 4

Implementierung

• Linked List Allocation:
- Die durch die Datei belegten Blöcke werden in einer verketteten Liste verwaltet
- Das erste Wort innerhalb des Blocks wird als Zeiger auf den nächsten Block verwendet

- Vorteil: Nahezu keine Fragmentierung (lediglich letzer Block); Nachteil: langsam,
Blöcklgröße =|= 2er-Potenz (wegen Anfangspointer))
- Lösung: Seperate Tabelle speichert die Allokation der Blöcke

↪→ FAT (File Allocation Table)

Mario Delic | Tutorübung | Übungswoche 11 5

Implementierung

Mario Delic | Tutorübung | Übungswoche 11 6

Implementierung

• index-nodes (i-node):
- Jede Datei wird repräsentiert durch eine i-node
- Enthält Attribute und Belegte Blöcke

- Vorteil: Muss nur für geöffnete Dateien geladen werden; Nachteil: theoretisch begrenzte
Dateigröße

- Lösung: Indirect Verweise auf weitere Blockadressen bei bedarf

Mario Delic | Tutorübung | Übungswoche 11 7

Aufgabe 2

a) Ein Computer mit 32-bit breiten virtuellen Adressen benutzt eine zweistufige
Seitentabelle zur Adressübersetzung.
Eine virtuelle Adresse bestehe aus 9 Bits für die erste Stufe, 11 Bits für die zweite
Stufe sowie einem Offset. Wie sieht die Adresse aus?

b) Wie groß sind die Seiten?

c) Aus wie vielen Seiten besteht der virtuelle Adressraum?

Mario Delic | Tutorübung | Übungswoche 11 8

Auszug aus dem Intel-Manual:
32-bit Paging mit 4 KiB Pages

Mario Delic | Tutorübung | Übungswoche 11 9

Auszug aus dem Intel-Manual:
32-bit Paging mit 4 MiB Pages

Mario Delic | Tutorübung | Übungswoche 11 10

Mario Delic | Tutorübung | Übungswoche 11 11

Aufgabe 2

d) Wie groß sind die Seitentabellen jeweils, wenn für die Größe eines Eintrags
vereinfachend 8 Byte angenommen werden?

e) Nehmen wir an, wir verwenden statt der zweistufigen Übersetzung eine einstufige, bei
der die erste Stufe 20-bit breite Seitennummern verwendet. Wie viel Speicher kann
adressiert werden? Kann mittels der zweistufigen Übersetzung mehr Speicher
adressiert werden?

Mario Delic | Tutorübung | Übungswoche 11 12

Aufgabe 2

d) Wie groß sind die Seitentabellen jeweils, wenn für die Größe eines Eintrags
vereinfachend 8 (23) Byte angenommen werden?

Tabelle der Ersten Stufe: 29 Einträge ∗ 23 Bytes
Eintrag = 212 Bytes = 4 KiB

Tabelle der Zweiten Stufe: 211 Einträge ∗ 23 Bytes
Eintrag = 214 Bytes = 16 KiB (pro Tabelle!)

Summer der Tabellen der Zweiten Stufe: 214 Bytes
Tabelle ∗ 29 Tabellen = 223 Bytes = 8 MiB

Insgesamt also: 223 Bytes + 213 Bytes = 4 KiB + 8 MiB

e) Nehmen wir eine einstufige Tabelle, die 20-bit breite Seitennummern verwendet. Kann
mittels der zweistufigen (9+11) Übersetzung mehr Speicher adressiert werden?

Mario Delic | Tutorübung | Übungswoche 11 13

Aufgabe 2

d) Wie groß sind die Seitentabellen jeweils, wenn für die Größe eines Eintrags
vereinfachend 8 (23) Byte angenommen werden?

Tabelle der Ersten Stufe: 29 Einträge ∗ 23 Bytes
Eintrag = 212 Bytes = 4 KiB

Tabelle der Zweiten Stufe: 211 Einträge ∗ 23 Bytes
Eintrag = 214 Bytes = 16 KiB (pro Tabelle!)

Summer der Tabellen der Zweiten Stufe: 214 Bytes
Tabelle ∗ 29 Tabellen = 223 Bytes = 8 MiB

Insgesamt also: 223 Bytes + 213 Bytes = 4 KiB + 8 MiB

e) Nehmen wir eine einstufige Tabelle, die 20-bit breite Seitennummern verwendet. Kann
mittels der zweistufigen (9+11) Übersetzung mehr Speicher adressiert werden?

• Einstufig = 220 ∗ 212 = 232

• Zweistufig = 29 ∗ 211 ∗ 212 = 232

Es kann gleich viel Speicher adressiert werden!

Mario Delic | Tutorübung | Übungswoche 11 14

Aufgabe 3

Hauptspeichergröße: 64 KiB; 32 Seiten; 8 Kacheln.

a) Wie lautet die höchste virtuelle Speicheradresse?

b) Wie viele Bit sind für die virtuelle und physische Adresse jeweils breit?

Mario Delic | Tutorübung | Übungswoche 11 15

Aufgabe 3

Hauptspeichergröße: 64 KiB; 32 Seiten; 8 Kacheln.

a) Wie lautet die höchste virtuelle Speicheradresse?
216 Bytes / 23 Kacheln = 213 Bytes pro Kachel → 213 Bytes pro Seite
213 Bytes pro Seite ∗ 25 Seiten = 218 Bytes (im virtueller Speicher)
↪→ Höchstes Offset ist immer Bytes-1, da man bei Byte 0x00 startet: 218 − 1 = 262.144 − 1
= 262.143

b) Wie viele Bit sind für die virtuelle und physische Adresse jeweils breit?

Mario Delic | Tutorübung | Übungswoche 11 16

Aufgabe 3

Hauptspeichergröße: 64 KiB; 32 Seiten; 8 Kacheln.

a) Wie lautet die höchste virtuelle Speicheradresse?
216 Bytes / 23 Kacheln = 213 Bytes pro Kachel → 213 Bytes pro Seite
213 Bytes pro Seite ∗ 25 Seiten = 218 Bytes (im virtueller Speicher)
↪→ Höchstes Offset ist immer Bytes-1, da man bei Byte 0x00 startet: 218 − 1 = 262.144 − 1
= 262.143

b) Wie viele Bit sind für die virtuelle und physische Adresse jeweils breit?
Physische Adresse: 64 KiB = 216 adressierbare Bytes = 16 bit.
Alternativ: 23 Kacheln = 3 bits Kachel; 213 Bytes pro Kachel/Seite = 13 bits Offset
↪→ 16 bit Adresse
Virtuelle Adresse: 25 Seiten = 3 bits Seite; 213 Bytes pro Kachel/Seite = 13 bits Offset
↪→ 18 bit Adresse

Mario Delic | Tutorübung | Übungswoche 11 17

Aufgabe 3

Hauptspeichergröße: 64 KiB; 32 Seiten (25); 8 Kacheln (23).

c) Ermitteln Sie die jeweils angesprochene physische Adresse. Benutzen Sie die Pagetable
aus Abbildung 1.

Mario Delic | Tutorübung | Übungswoche 11 18

Aufgabe 3

Hauptspeichergröße: 64 KiB; 32 Seiten (25); 8 Kacheln (23).

d) Ermitteln Sie die jeweils angesprochene virtuelle Adresse. Benutzen Sie die Pagetable
aus Abbildung 1.

Mario Delic | Tutorübung | Übungswoche 11 19

Aufgabe 4
Segmentierung

a) Erweitern Sie das Bild, sodass ein Zugriff auf gs:0x1000 auf einen Zugriff auf 0x40000
übersetzt wird.

Mario Delic | Tutorübung | Übungswoche 11 20

Aufgabe 4
Segmentierung

a) Erweitern Sie das Bild oben, sodass ein Zugriff auf gs:0x1000 auf einen Zugriff auf
0x40000 übersetzt wird.

Mario Delic | Tutorübung | Übungswoche 11 21

Aufgabe 4
Segmentierung

b) Lösen Sie die folgenden Speicherzugriffe auf.
Falls nicht anders angegeben erfolgen die Zugriffe lediglich mit Nutzerrechten.

Mario Delic | Tutorübung | Übungswoche 11 22

