Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Minchen l] ; "

Ubungswoche 2 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Begrifflichkeiten TUTI

Betriebsarten

e Stapelverarbeitung:
Keine Nutzerinteraktion, der Ablauf des Programms ist bereits definiert. Anwendung oft
bei groBen/monotonen Aufgabenmengen.
e Transaktionsbetrieb:
Muss Atomaritat, Konsistenz etc. gewéhrleisten. Zu finden z.B. bei Datenbanken.
¢ Dialogbetrieb:
Benutzer und BS interagieren miteinander. Beispielsweise Desktopbetriebssysteme.
e Echtzeitbetrieb:

Eine maximale Reaktionszeit darf nicht Gberschritten werden. Zu finden z.B. in der
Robotik.

Mario Delic | Tutoriibung | Ubungswoche 2 2

Begrifflichkeiten TUTI

BS Typen

Monolithische Systeme: BS als ein groBes Programm ausgefihrt.
e BS permanent im Kernel-Mode (privilegierter Modus) und Arbeitsspeicher.

o Mdglichkeit fir ein breites Funktionsspektrum und viel Flexibilitat.
e Weniger Strukturiert, somit schwerer zu Warten.

o Anféllig fir schwere crashes.
Mikrokernel Systeme: Kleinerer Kern durch weniger Funktionen.
e Reduzierung der Fehleranfalligkeit durch aufteilen in Module. Nur der Mikrokern im
Kernel-Mode.
e Mikrokern bieten nur noch Basismechanismen. Er ist kleiner, sicherer und leichter
wartbar.

e Subsysteme laufen im User-Modus ohne Privilegien.

Mario Delic | Tutoriibung | Ubungswoche 2

Linux T|.|T|

Standardfunktionen

Eine Reihe von essentiellen Funktionen die in der Vorlesung vorgestellt wurden:
o cat someFile: Gibt Inhalt von someFile aus.

e cat >someFile: Erstelle someFile (auch mdgl. mit touch) und schreibe in sie.

o grep stringToMatch someFile: Printed alle Zeilen aus someFile, die (teilweise) mit
stringToMatch matchen. Verschiedene Modifier: * = Durchsuche Verzeichnis (statt
Datei); -i = case insensitive; -v = Zeilen, die NICHT matchen.

¢ mkdir someDir: Erstellt das Verzeichnis someDir.

e cd pathToDir: Wechselt in das Verzeichnis unter dem Pfad pathToDir. (\= root directory;
. = current diretory; .. = parent directory).

e pwd: Gibt aktuelles Verzeichnis aus.
e Is -la: Is: gibt Inhalt des Verzeichnisses aus; -I: ausfihrliche Liste; -a: zeigt hidden files.

Mario Delic | Tutoriibung | Ubungswoche 2 4

Weitere Funktionen und Systemcalls TUTI

int open (const char* pathToFile, int flags): Offnet Datei und gibt einen zugehérigen
filedescriptor zuriick, welcher von read/write/close verwendet werden kann. Flags:
O_RDONLY, O_WRONLY, O_RDWR, O_CREAT uvm.

int close (int filedescriptor): SchlieB3t eine von open gedffnete file. Returned 0 wenn
erfolgreich, sonst -1.

ssize_t write (int filedescriptor, const void *buf, size_t bytesToWrite): Schreibt
bytesToWrite-viele Bytes aus dem Inhalt eines Puffers buf in eine von open gedffnete
file. Returned die Anzahl an geschriebenen Bytes; -1 bei Fehler.

ssize_t read (int filedescriptor, void *buf, size_t bytesToRead): Liest
bytesToRead-viele Bytes aus einer gedffneten file raus und schreibt diese in buf. Return
ist die Anzahl an gelesenen Bytes; -1 bei Fehler.

off_t Iseek (int filedescriptor, off_t offset, int whence): Verschiebt das file-offset
(=aktuelle Lese-/Schreibposition der file). whence: SEEK_SET: Dateistart; SEEK_CUR:
Aktuelle Position; SEEK_END: Dateiende. offset: Auf whence addierte Bytes

Mario Delic | Tutoriibung | Ubungswoche 2 5

Operatorprazedenz TUTI

C-Lesen

Zur Evaluierung und Veranschaulichung der Operatorreihenfolge kann man die relevanten
Strukturen jeweils 1:1 in die englische Sprache tberfihren:

e X: “declare x as” oder “x is”

*: “pointer to”

&: “reference to”

[1: “array of” < [length]: “array of length”

(): “function returning” < (type): “function (with type argument) returning”

Mario Delic | Tutoriibung | Ubungswoche 2 6

Operatorprazedenz TUTI

In C gelten u.a die folgenden Prazedenzregeln:

Precedence Operator Description Associativity
- Suffix/postfix increment and decrement Left-to-right
() Function call

1 Array subscripting Char *efg [5] () ;

1 Structure and union member access
-> Structure and union member access through pointer P .
(type) {1ist} Compound literal(ces) e Short w% (*hlJ) (VOld)) ;
- Prefix increment and decrement!note 11 Right-to-left
+ - Unary plus and minus
I~ Logical NOT and bitwise NOT
5 (type) Cast
* Indirection (dereference)
& Address-of
sizeof Size-oftnote 21
_Alignof Alignment requirementi(c11)
3 */% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2

Operatorprazedenz

In C gelten u.a die folgenden Prazedenzregeln:

Precedence Operator

3
4

++ - -

0
iy

->

++

sizeof
_Alignof
*/%

+

(type) {list}

Associativity
Left-to-right

Description

Suffix/postfix increment and decrement

Function call

Array subscripting

Structure and union member access

Structure and union member access through pointer
Compound literal(ces)

Prefix increment and decrement(note 1] Right-to-left
Unary plus and minus

Logical NOT and bitwise NOT

Cast

Indirection (dereference)

Address-of

Size-oftnote 21

Alignment requirementi(c11)
Multiplication, division, and remainder Left-to-right
Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2

char *efg[5]1Q);
efg is array of 5 function returning
pointer to char

short (**(*hij) (void));

Operatorprazedenz

In C gelten u.a die folgenden Prazedenzregeln:

Precedence Operator

3
4

++ - -
0
[1

->
(type) {list}

++ -

sizeof
_Alignof
*/%

-

Associativity
Left-to-right

Description

Suffix/postfix increment and decrement

Function call

Array subscripting

Structure and union member access

Structure and union member access through pointer
Compound literal(ces)

Prefix increment and decrement(note 1] Right-to-left
Unary plus and minus

Logical NOT and bitwise NOT

Cast

Indirection (dereference)

Address-of

Size-oftnote 21

Alignment requirementi(c11)
Multiplication, division, and remainder Left-to-right
Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2

char *efg[5]1Q);
efg is array of 5 function returning
pointer to char

short (**(*hij) (void));
hij is pointer to function with no
arguments returning pointer to
pointer to short

Aufgabe 1 TUTI

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];
b) unsigned long int **x();

¢) char *(*(**foo [1[81)O)[];
d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 10

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();

¢) char *(*(**foo [1[81)O)I[1; ~
d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 11

Aufgabe 1 TUTI

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **fool7];

foo is array of 7 pointer to pointer to long

b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int

¢) char *(*(**foo [1[8]1)O)I[];
d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 12

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];

foo is array of 7 pointer to pointer to long

b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int

¢) char *(*(**foo [1[81)O)I[1;

foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char

d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 13

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];

foo is array of 7 pointer to pointer to long

b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int

¢) char *(*(**foo [1[81)O)I[1;

foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char

d) int (*(*foo) (void))[];

foo is a pointer to function with no arguments returning pointer to array of int

Mario Delic | Tutoriibung | Ubungswoche 2 14

Aufgabe 2 TUTI

Hexdump

Gegeben sei ein Hexdump.

AuBBerdem:
e 32-bit Architektur

o Integer 32-bit breit
e little-endian

a) Wie viele Hex-Zeichen umfasst eine Speicheradresse im obigen Hexdump?

b) Nehmen wir an, an der Adresse 0x8c ist ein Pointer gespeichert. Wie lautet die
Adresse, auf die der Pointer zeigt? Beachten Sie die endianness der Architektur!

Mario Delic | Tutoriibung | Ubungswoche 2 15

Aufgabe 2

OFFSET

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070

0x0080-

0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00£0

Mario Delic | Tutoriibung | Ubungswoche 2

00

89
00
aa
47
61
66
f1
68
62
41
5d
18
c4
08
49
87

01

50
00
00
42
01
74
20
74
2e
54
76
63
44
00
6
39

02

4e
05
00
53
a8
77
£5
74
6f
78
97
bb
62
00
cb
33

03

47
00
00
00
3f
61
65
70
72
9c
be
37
12
00
58
df

04

0od
00
a7
88
a7
72
72
3a
67
ec
85
a2
4d
39
00
59

05

Oa
00
73
00
69
65
73
2f
2f
dd
de
49
31
05
dd
75

06

la
02
42
00
00
00
69
73
10
77
62
ae
d7
00
e5
9d

07

Oa
82
49
00
00
6d
6f
74
66
9c
69
29
80
00
ec
9

08

ff
08
54
4d
00
61
6e
72
17
54
6e
eb
bl
b2
ce
ce

09

00
06
08
00
38
74
33
69
19
e5
67
17
5f
d4
7e
73

0A

00
00
08
00
74
70
2e
be
00
al
6f
d4
5b
2d
de
9e

0B

00
00
08
0f
45
6¢C
31
67
00
ff
00
28
12
2¢C
af
27

0cC

49
00
08
61
58
6f
2e
00

f1
a4
22
51
db
d7
12

0D

48
8e
7cC
00
74
74
31
74

cf
05
45
41
cf
bc
04

OE

44
3b
08
00
53
6¢C
2¢C
6C

OF

52
74
64
of
6f
69 20 @ w9 wu
20
69

49 44

6cC
93
16
20
ef
S5e
41

85
dCOKQQ L(S OO ZO
05

8a
8f
3c
80

Aufgabe 2 Tm

Hexdump

c) Bestimmen Sie die Ausgaben des folgenden Programms, ausgefiihrt im Kontext des
obigen Speicherausschnitts:

char *xx = (charx) 0x30;

intx i = (intx) 0Oxdo;

printf(”"Some_string:_%s\n", x);
printf(”"Some_other_string:_%s\n", x+0x46);

int a if1];
int b = *x(intx*)=*i;
printf(”"a:_%d,_b:_%d\n", a, b);

CoOo~NoOoOh wWhN =

Mario Delic | Tutoriibung | Ubungswoche 2 17

Aufgabe 2 TUTI

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF

0x0000 89 50 4e 47 0d Oa la O0a ff 00 00 00 49 48 44 52 char *x = 0x30
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 printf ("%s",x);
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64) N *
0x0030 88 00 00 00 4d 00 00 Of 61 00 00 Of 5—"”‘3 = Char
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f

0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢ 6f 74 6¢C 69

0x0060 f1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20 az Gt 73
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6¢c 69 é

0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44 6 B S
0x0090 41 54 78 9c ec dd 77 9c 54 e5 al ff f1 cf 6¢c 85

0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc

0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05

0x00c0 c4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a

0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f

0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c

0x00£f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutoriibung | Ubungswoche 2 18

Aufgabe 2

Hexdump

OFFSET

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0

00

89
00
aa
47
61
66
f1
68
62
41
5d
18
c4
08
49

01

50
00
00
42
01
74
20
74
2e
54
76
63
44
00
6

02

4e
05
00
53
a8
77
£5
74
6f
78
97
bb
62
00
cb

03

47
00
00
00
3f
61
65
70
72
9c
be
37
12
00
58

04

od
00
a7
88
a7
72
72
3a
67
ec
85
a2
4d
39
00

05
Oa
00
73
00
69
65

2f @4

2f 1
dd
de
49
31
05
dd

06

la
02
42
00
00
00

77
62
ae
d7
00
e5

07
0a
82
49
00
00
6d

08

ff
08
54
4d
00
61
6e
72

09

00
06
08
00
38
74
33
69

0A

00
00
08
00
74
70
2e
be

0B 0C 0D OE OF

Tl

00 49 48 44 52 char *x = 0x30;
00 00 8e 3b 74 printf ("%s" x+0x46) ;

08 08 7c 08 64
0f 61 00 00 Of
45 58 74 53 6f
6c 6f 74 6¢C 69
31 2e 31 2c 20
6 74 6¢c 69

9c
69
29
80
00

RO BRI udRibdAg bardsd ot f9

17
54
6e
eb
bl
b2
ce
ce

19
e5
67
17
5f
d4
7e
73

00
al
6f
d4
S5b
2d
de
9e

00 20 00 49 44
ff £f1 cf 6¢ 85
00 a4 05 93 dc
28 22 45 16 05
12 51 41 20 8a
2c db cf ef 8f
af d7 bc 5e 3c
27 12 04 41 80

X = 0.36 +0ct6=

Or?6

S-H-[nj

19

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF

0x0000 89 50 4e 47 0d 0Oa la Oa ff 00 00 00 49 48 44 52 int *i = 0xd0;

0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8 3b 74 int a = i [1];

0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",a);
0x0030 47 42 53 00 88 00 00 00 4d 00 00 Of 61 00 00 Of
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢ 6f 74 6¢C 69
0x0060 f1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6¢c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 al ff f1 cf 6¢c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0. 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 ‘¢4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a
0x00d0 (08 00 00 00 3905 00 00’ b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00£f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutoriibung | Ubungswoche 2

Aufgabe 2 TUTI

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF

0x0000 89 50 4e 47 0d 0Oa la Oa £f 00 00 00 49 48 44 52 int *i = 0xdO;
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 int b = * (int*) *i;
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",b);
0x0030 47 42 53 00 88 00 00 00 4d 00 00 Of 61 00 00 Of

0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f

0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢ 6f 74 6¢C 69

0x0060 f1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20 4/4—5’
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6¢c 69

0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44 I (;,#‘*‘]
0x0090 41 54 78 9c ec dd 77 9c 54 e5 al ff f1 cf 6¢c 85 o

0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc

0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05

0x00c0 c4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a d LE

0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f

0x00e0 49 £f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c

0x00£f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutoriibung | Ubungswoche 2 21

Aufgabe 3

Sichere Programmierung
a)

1 char userinput[256];
2 gets(userinput);

1 char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);

Mario Delic | Tutoriibung | Ubungswoche 2

22

Aufgabe 3 Tum

Sichere Programmierung (‘ _ .
-\\6-643 USes 1npat ,256/ 9"(9;4)
a)
1 h u input[256];
s L 2654 iy,

Die Funktion gets setzt kein Limit an den einzuesenden String und fiithrt somit zu
Buffer-Overflow!
b)

1 «char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);
——

Mario Delic | Tutoriibung | Ubungswoche 2 23

Aufgabe 3

Sichere Programmierung

a)
1 char userinput[256];
2 gets(userinput);

Die Funktion gets setzt kein Limit an den einzuesenden String und fiithrt somit zu
Buffer-Overflow!
b)

1 «char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);

Scanf liest hier zwar nur so viele Zeichen ein wie in den Buffer passen ein (256),
aber ist der Input 256 Zeichen lang, so wird der NULL-Terminator am Ende hinter

das Array geschrieben!

Mario Delic | Tutoriibung | Ubungswoche 2

24

Aufgabe 3

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);

1 int *pl1, p2;

Mario Delic | Tutoriibung | Ubungswoche 2

25

Aufgabe 3 Tum

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);
Die Makros werden als erster Schritt vom Praprozessor aufgeldst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1«3+ 6 = 13
berechnet, anstelle von (4 + 1) % (3 + 6) = 45 ! Eine SinngemaBe Definition des
Makros wére: #define MUL (x,y) ((x) * (y))

d) W ik * ,
1 int @, 4 in¥ e/{lpzl
ink *@AI *eL |

Mario Delic | Tutoriibung | Ubungswoche 2 26

Aufgabe 3

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);

Die Makros werden als erster Schritt vom Praprozessor aufgeldst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1«3+ 6 = 13

berechnet, anstelle von (4 + 1) % (3 + 6) = 45 ! Eine SinngemaBe Definition des

Makros waére: #define MUL (x ,y) ((x) * (y))
d)
1 int *pl1, p2;
Nur p1 ist ein int-pointer! Der Typ von p2 ist int! Der Asterisk ist der Variable
zugeordnet, nicht dem Typen.

Mario Delic | Tutoriibung | Ubungswoche 2

27

Aufgabe 3
Sichere Programmierung
e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("*xp_is_%d", *p);
f)
1 intx list;
2 if (list == NULL) {
3 list = malloc(LIST_SIZE);
4 3

Mario Delic | Tutoriibung | Ubungswoche 2

28

Aufgabe 3

Sichere Programmierung

e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("*p_is._%d", *p);
Use-After-Free!

f)

1 intx list;

2 if (list == NULL) {

3 list = malloc(LIST_SIZE);
4 3}

Mario Delic | Tutoriibung | Ubungswoche 2

29

Aufgabe 3

Sichere Programmierung

e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("xp_is_%d", *p);
Use-After-Free!

f)
1 intx list;
2 if (list == NULL) {
3 list = malloc(LIST_SIZE);
4 3}

int* list ist uninitialisiert! Der Wert von list kdnnte somit irgendwas sein.
Stattdessen: int* list = NULL;

Mario Delic | Tutoriibung | Ubungswoche 2

30

