Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Minchen l] ; "

Ubungswoche 3 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Prozesse T|.|T|

Basics

Ein Prozess stellt ein Programm in Ausfiihrung da. Er gruppiert Ressourcen und besitzt
einen Kontrollfluss.

Threads stellen einen Kontrollfluss dar. Sie sind Aktivitatstrager.

User-Level Threads: Durch eine Programmbibliothek im implementiert. BS hat keine
Kenntnis. 'Simulierte’ Nebenlaufigkeit.

Kernel-Level Threads: Der Kernel sieht und verwaltet die Threads. 'Echte’ Nebenlaufigkeit
moglich.

Mario Delic | Tutoriibung | Ubungswoche 3 2

Prozesse
Zustiande

resign

add retire

»
P

rechnend

rechenwillig !
running

assign
ready

wartend

blocked
ausgelagert
swapped out

Mario Delic | Tutoriibung | Ubungswoche 3

swap out
swap in

Prozesse T|.|T|

Erzeugung

fork(): Systemcall zur Erzeugung eines Kindprozesses.

Der Kindprozess ist eine Kopie des Elternprozesses und erbt seine Daten. Copy-on-write
memory wird dabei erst kopiert, wenn schreibend darauf zugegriffen wird.

Return-value: im parent = child PID; im child = 0.

(kill(int pid, int signal): Sende ein Signal an Prozess pid; exit(...): Beendet Prozess.)

pthread_create(...): Funktion zur erstellung eines neuen Threads.
(phtread_join(pthread t, ...) Aufrufernder Thread wartet bis t fertig ist; phtread_exit(...):
Thread wird beendet.)

Far Details — man pages (man 1 = shellcommands (cat, grep, git, man...), man 2 =
Systemcalls (fseek, open, sched_yield...), man 3 = Programmbibliotheksfunktionen
(phtread_create, malloc, puts, gsort...)

Mario Delic | Tutortibung | Ubungswoche 3 4

Prozesse
Attribute

Per-process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per-thread items
Program counter
Registers

Stack

State

Mario Delic | Tutoriibung | Ubungswoche 3

Aufgabe 1 TUTI

Scheduling

Es seien 3 Prozesse (Py, P, P3) gegeben.
Ihre Ankunftszeiten am Scheduler (a1, a9, a3) seien (0,5, 2).
Ihre Rechenzeiten (r1, 79, 73) betragen (7, 3,4).

Nehmen Sie an, dass ein Kontextwechsel eine Zeiteinheit benétigt. Die Aktivierung des
Schedulers kann in dieser Aufgabe vernachlassigt werden. Modellieren Sie den
Scheduler/Dispatcher als einen eigensténdigen Prozess.

Skizzieren Sie unter diesen Annahmen den Ablauf der Prozesse in einem Gantt-Diagram fur
folgende Schedulingstrategien.

Hinweis: Vernachlassigen Sie den initialen Kontextwechsel. Beginnen Sie im ersten Zeitslot
mit dem ersten rechnenden Prozess.

Mario Delic | Tutoriibung | Ubungswoche 3 6

Aufgabe 1a: First-Come-First-Served

FCFS: Non-preemptive, Prozesse werden in der Reihenfolge ihrer Ankunftszeiten
abgearbeitet.

—

P = (Pl,PQ,Pg) —ad= (0,5,2); = (7, 3,4)

TUTI

Scheduling

0 ‘ 1 @‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | 8 | 9 ‘10|11‘12|13‘l4|15’16|17‘18‘19‘20‘21‘22‘23‘24|25‘26|27‘28|29‘30

Py

B e xXy

Pk kA K LXK

Mario Delic | Tutoribung | Ubungswoche 3

Aufgabe 1b: Shortest Remaining Time Next

TUTI

SRTN: Preemptive, Auswahl des Prozesses mit der kiirzesten verbleibenden Rechenzeit,

Unterbrechungen erfolgen nur beim Eintreffen eines neuen Prozesses.

—

P = (Pl,PQ,Pg) —ad= (0,5,2); = (7, 3,4)

Scheduling

0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | 8 | 9 ‘10|11‘12|13‘l4|15’16|17‘18‘19‘20‘21‘22‘23‘24|25‘26|27‘28|29‘30

n Sprax

Py

Mario Delic | Tutoribung | Ubungswoche 3

Aufgabe 1c: Round Robin

TUTI

RR mit einem Zeitquantum von einer Zeiteinheit und zyklischer Abarbeitung der Prozesse

(statische Prioritaten, Sortierung nach der PID (=Index))

—

P = (Pl,PQ,Pg) —ad= (0,5,2); = (7, 3,4)

Scheduling

0 ‘ 1 ‘(2)‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | 8 | 9 ‘10|11‘12|13‘l4|15’16|17‘18‘19‘20‘21‘22‘23‘24|25‘26|27‘28|29‘30

Pyl — X

% 1L T U O I A

PR o

Mario Delic | Tutoribung | Ubungswoche 3

Aufgabe 1d: Round Robin 2

TUTI

RR mit einem Zeitquantum von 2 Zeiteinheiten und zyklischer Abarbeitung der Prozesse

(statische Prioritaten, Sortierung nach der PID (=Index)).

—

P = (Pl,PQ,Pg) —ad= (0,5,2); = (7, 3,4)

Scheduling

0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | 8 | 9 ‘10|11‘12|13‘l4|15’16|17‘18‘19‘20‘21‘22‘23‘24|25‘26|27‘28|29‘30

Bl e m
Pgéiéiéi--i;iji‘iiiéié

Plxax Lo =

Mario Delic | Tutoribung | Ubungswoche 3

10

Aufgabe 2: Priority RR Scheduling

Priorisiertes RR Verfahren:

e Zeitquantum q = 2 Zeitenheiten

e Initialprioritaten (I, I2, I3) = (10,9, 14)
e Ankunftszeiten: (0, 2,0)

e Rechenzeiten: (6,6, 8)

* rechnend: Prioritat -2/1ZE

- wartend: Prioritat +1/2 ZE

Mario Delic | Tutoriibung | Ubungswoche 3

11

Aufgabe 2: Priority RR Scheduling Tm

P = (P, P, P3) — I = (10,9, 14); & =(f¥e)}; 7 2]

Scheduling

0‘1 2‘ ‘ ‘ ‘ ‘ | |9‘10|11‘12|13‘l4|15’16|17‘18‘19‘20‘21‘22‘23‘24|25‘26|27‘28|29‘30
Schedules uird akt u/

: AN e N
P%)(;XT"E":*f EE i o
iAo b R U N OO RO SN SO SIS S
[} ¢ : : . : :
Pyl o= [S S S S S S S S S S S S
,,,,,, v 94 A o T : : : S S S S S S N

P 1 Xxi—

Mario Delic | Tutoriibung | Ubungswoche 3 12

Aufgabe 2: Priority RR Scheduling Tm
Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V' fir dieses Szenario.

W = D wi V = i Y

n n

Mittlere Verweilzeit V: Mittlere Wartezeit 1V :

Mario Delic | Tutoriibung | Ubungswoche 3 13

Aufgabe 2: Priority RR Scheduling Tm

Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V fiir dieses Szenario.

W = D wi V = i Y

n n

Mittlere Verweilzeit V: Mittlere Wartezeit 1V :
e vy: 16 Zeiteinheiten

e vy 18 Zeiteinheiten
e v3: 18 Zeiteinheiten
o V=(16+18+18)/3 =52/3

Mario Delic | Tutoriibung | Ubungswoche 3 14

Aufgabe 2: Priority RR Scheduling TUTI

Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V fiir dieses Szenario.

W = D wi V = i Y

n n
Mittlere Verweilzeit V: Mittlere Wartezeit 1 :
e v1: 16 Zeiteinheiten e wi: 10 Zeiteinheiten
e vy: 18 Zeiteinheiten e wy: 12 Zeiteinheiten
e v3: 18 Zeiteinheiten e wj3: 10 Zeiteinheiten

o V= (16+ 18+ 18)/3 = 52/3

W = (10 + 12 + 10)/3 = 32/3

Mario Delic | Tutoriibung | Ubungswoche 3 15

Aufgabe 3 TUTI
Noch mehr C

a) Betrachten Sie die nachfolgende Implementierung einer Bibliotheksfunktion. Um welche
Funktion handelt es sich? Was ist naturlichsprachlich die Abbruchbedingung?
void fct(char *s, const char =*t) {
while(*s++ = xt++);
}

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(int)==4
struct v {

struct v {
char a;

struct v *o;
short h; short h;
struct v *o; char a;

3

}

Listing 1: Variante 1 Listing 2: Variante 2

Mario Delic | Tutoriibung | Ubungswoche 3 16

Aufgabe 3 Tum
Noch mehr C

a) Betrachten Sie die nachfolgende Implementierung einer Bibliotheksfunktion. Um welche
Funktion handelt es sich? Was ist natirlichsprachlich die Abbruchbedingung?
void fct(char *s, const char *t) {

while(*s++ = %xt++);
}
s und t sind Anféange von strings. Der Funktion heif3t strcpy(). Der string t wird Byte fir Byte
in s kopiert.

Der return-value eines Assignemnts (=) ist das, was zugewiesen wurde. Die while-Schleife
terminiert also sobald ein NULL-Byte assigned wurde, sprich: das Ende des strings t
erreicht wurde.

Mario Delic | Tutoriibung | Ubungswoche 3 17

Aufgabe 3 TUTI
Noch mehr C

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(short)==

struct v { struct v {

char a; struct v *o;
short h; short h;
struct v *o; char a;

3} }

Listing 1: Variante 1 Listing 2: Variante 2

Mario Delic | Tutoriibung | Ubungswoche 3 18

Aufgabe 3 Tum
Noch mehr C

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(short)==

struct v { 1+ 4= 60 Dydd,}\.) struct v {
char a; struct v xo;
short h; o }h{ i l o | short h; o lhl&l % |
struct v *o; char a;

; N 58 Rad

Listing 1: Variante 1 /{6|5 Listing 2: Variante 2 466
Alignment-Anforderungen fliihren zu Padding. Padding richtet sich nach dem grétem
Element des structs (hier: Pointer). Die GréBe ist flr beide structs identisch. Das Layout
im Speicher ist aber sehr wohl unterschiedlich. C sortiert die Elemente einer Struktur nicht
um. Es kann bei structs zu Problemen kommen, wenn Softwarekomponenten

verschiedene struct-Definitionen nutzen und Instanzen davon austauschen.
IR Podding

2
%—\K_’__/

Mario Delic | Tutoriibung | Ubungswoche 3 Y6 B 19

Aufgabe 3 TUTI
Noch mehr C

c) Betrachten Sie folgendes C-Programm, welches die n-te harmonische Zahl
H,=1+43+1+--+ 1=} berechnet.

Beschreiben Sie etwaige Programmierfehler, die im obigen Programm gemacht wurden
und erklaren Sie kurz, wie sie sich auf das Programm auswirken.

Mario Delic | Tutoriibung | Ubungswoche 3 20

Aufgabe 3

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 // Returns the first n harmonic numbers

5 double* harmonic_numbers(unsigned int n) {
6 double result[n];

7 result [0] = 1.0;

8

9 for (unsigned int i = 1; i < n; i++) {
10 result[i] = result[i-1] + (1.@ / (double) (i + 1));
11 H

12 return result;

13 3}

14

15 void print_harmonics(unsigned int n) {

16 if (n == @) return;

17 double *result = harmonic_numbers(n);
18 for (unsigned int i = @; i < n; i++) {
19 printf ("%f\n", result[il]);
20 }
21 3}
22 // [...]

Mario Delic | Tutoriibung | Ubungswoche 3

21

Aufgabe 3 Tum

Da das Array result nicht mit malloc alloziert wird landet es auf dem
Stackbereich seiner Funktion (harmonic_ numbers).

Nachdem eine Funktion returned, wird der Stackbereich der Funktion
wieder freigegeben! Greift man auf die Daten an der Stelle auf die
der Pointer result zeigt (Pointer, der auf das erste Element des
Arrays zeigen sollte) zu, so handelt es sich um undefined

behavior!

Bonus: Variable Length Arrays (VIA) wie result [n] werden fiir bestimmte Berechnungen gern
verwendet, da sie i. d. R. auf dem Stack alloziert werden und deswegen effizienter sind als auf dem
heap allozierte Arrays. Aufgrund der Anfalligkeit flr Stack-Overflow Angriffe sind sie in
Betriebssystemen eher unvorteilhaft.

Mario Delic | Tutoriibung | Ubungswoche 3

22

