Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Minchen l] ; "

Ubungswoche 5 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Synchronisation TUTI
Begrifflichkeiten

Nebenlaufigkeit
Programmteile kbnnen unabhangig voneinander in beliebiger Reihenfolge oder gleichzeitig
ausgefihrt werden

Echte Parallelitat
Echt gleichzeitige Ausflihrung z.B. Multi-Prozessor Systeme

Problem: Nichtdeterminismus:

Das Verhalten des Programms kann bei gleichen Bedingungen/Eingaben dennoch
unterschiedlich sein. 20

P1:x=x+5; i,(.,-%_ /.—-—\40?,

P2:x=x"*2;

— Ergebnis nicht eindeutig.

Mario Delic | Tutoriibung | Ubungswoche 5 2

Synchronisation Tm
Begrifflichkeiten

Verklemmung (Deadlock)
1) In einer Menge an Prozesses warten alle Prozesse auf bestimmte Ereignisse

2) Diese Ereignisse kdnnen aber nur Prozessen aus derselben Menge ausldsen
3) Alle Prozesse warten ohne Ausweg

Verhungern

Prozesse, die nicht im Deadlock sind, aber deren Ausfiihrung (aus anderen Griinden)
unendlich lange hinausgezdgert/vermieden wird

— Ein System sollte verklemmungsfrei (keine Deadlocks) und fair (kein Vehungern) sein.

Mario Delic | Tutoriibung | Ubungswoche 5

Synchronisation
Begrifflichkeiten

Livelock

Prozesse sind nicht im Deadlock, aber machen trotzdem keinen Fortschritt (klemmen
trotzdem’)

1) Zwei Prozesse A und B locken jeweils die Ressource R, und Ry
2) Zur weiteren Ausflihrung braucht A aber zusétzlich Ry, und B R,
3) A und B sehen, dass sie Ry und R, aber nicht bekommen kénnen, da belegt
4) A und B geben ihre zuvor belegten Ressourcen R, und Ry, frei
)

5) Der Vorgang wiederholt sich (unendlich)

Mario Delic | Tutoriibung | Ubungswoche 5

Synchronisation Tm

Begrifflichkeiten

Warten

Aktives Warten (z. B. Spinlock):
e In einer (Endlos)schleife wird dauernd auf die Verflgbarkeit der Ressource gepruft

Passives Warten:
e Ein Prozess legt sich (z.B mittels sleep()) schlafen

o Bei Freigabe der ndtigen Ressource wird der Prozess wieder geweckt

Mario Delic | Tutoriibung | Ubungswoche 5

Synchronisation
Umsetzung

Semaphor
e Zahlvariable

e Unterstutzt Operationen up und down
e down kann nicht ausgefihrt werden wenn Semaphor==0

Mutex
e bindres Semaphor

e Unterstiitzt Operationen up/unlock und down/lock
e lock kann nicht ausgefuhrt werden wenn Mutex==Ilocked
e (unlock auf ein unlocked Mutex ist i.d.R. undefined behavior)

Mario Delic | Tutoriibung | Ubungswoche 5

Aufgabe 2 TUTI

Netzwerkkarte

Eine Datei soll iber ein Netzwerk auf einen Computer transferiert werden. Die
Netzwerkkarte N des Computers empfangt blockweise Datenpakete und legt diese im Buffer
B (Kapazitat: n) ab, von wo aus sie nach und nach enthommen und auf die Festplatte F
gespeichert werden. Es sei folgender Lésungsversuch mit dem Mutex wa als Pseudocode
gegeben:

a) Laufen beide Prozesse verklemmungsfrei? Welche Situationen fiihren zu
Verklemmungen?

b) Geben Sie eine verbesserte Version an, in der keine Probleme mehr auftreten, indem
Sie zwei Semaphore geeignet deklarieren und geeignete Aufrufe von down und up
einfigen.

c) Welche Probleme treten auf, wenn Sie in lhrer verbesserten Lésung die Reihenfolge der
down-Operationen fiir wa und Ihrer beiden zuséatzlichen Semaphore vertauschen?

Mario Delic | Tutoriibung | Ubungswoche 5 7

o) endloses warten im kritishen Bw't/ﬂ/nath spe-e,

Aufgabe 2 des MHutex — OE4DLocCkk
Netzwerkkarte

1 Deklaration:

2 wa(l);

3

4 Netzwerkkarte N:

5 while(true) {

6 <empfange Datenblock>;

7 down (wa);

8 <schreibe Datenblock in B, falls Platz frei, sonst warte>;
8 up(waj;

10 }
11
12 Festplatte F:
13 while(true) {
14 down(wa);
15 <entnimm Datenblock aus B, falls vorhanden, sonst warte>:
16 up(wa); —_—
17 <schreibe Datenblock auf Festplatte>;
18 3

Mario Delic | Tutoriibung | Ubungswoche 5

Aufgabe 2 TUT

Netzwerkkarte

b) Deklaration:

wa(1);
belegt (@) ;
frei(n);
Netzwerkkarte N: Festplatte F:
while (true) { while(true) {
<empfange Datenblock>; down (belegt);
down(frei); down (wa) ;
down (wa); <entnimm Datenblock aus B, falls vorhanden, sonst warte>;
<schreibe Datenblock in B>; up(wa);
up(wa); up (frei);
up(belegt); <schreibe Datenblock auf Festplatte>;
} }

1 Sw\a‘g}\om sied nlﬂb, do ein Smaphor nur eae Ez'smsrth 5{“"*’79’.""3 Steuern kaon
Chier: entueder die Leere odes die Vale). Das Uegd doron doss ein @mophor
(edigftch nach unlen beschrankt ist und nar b2 “0" bockiert Cnue dowr blockiert).

. ; . n 2, 'S
gch oben lup) S'H ec kere gfm‘lt . D:es& g,-m'zg mess QQ urch en 2 S‘QI'\QPJ o
Mario Delic | Tutoriibung | Ubungswoche 5 reol isier? wer fen . 9

Aufgabe 3 TUTI

Wir betrachten die Strecke zwischen Garching-Forschungszentrum (GF) und Fréttmaning

(F). Da zur Zeit gebaut wird, herrscht zwischen Garching-Hochbrlick (GH) und F eingleisiger
Betrieb. Im Folgenden modellieren wir die Synchronisation der Strecke GF <> F. Gegeben
ist: im Bahnhof GF haben nur zwei Zlige Platz, die Kapazitat des Bahnhofs F ist unbegrenzt.

a) Figen Sie einen Mutex hinzu, sodass es auf dem eingleisigen Abschnitt zu keiner
Kollision kommen kann. Ist aktuell ein Zug im eingleisigen Abschnitt, so muss der
nachste im letzten Bahnhof vor der Baustelle warten.

b) Fihren Sie mittels Semaphoren Zahler ein, die daflir sorgen, dass in den Bahnhofen GF
und F jeweils niemals weniger als null Ziige sind. Sorgen Sie dafiir, dass in GF
hiemals mehr als zwei Zige sind. Sind in GF bereits zwei Zlige, so darf in F kein
weiterer Richtung GF ausfahren. Am Anfang seien in GF ein Zug, in F drei.

c) Verhindern Sie, dass auf dem Streckenabschnitt GF <= GH in beiden Richtungen

zusammen mehr als zwei Zlge unterwegs sind.
Mario Delic | Tutoriibung | Ubungswoche 5 10

!

[Prozess

Fahre_in_richtung_F

{

dow ~ (6F 6“"7‘”
(gown (6EGH Prti)

<Fahre aus GF aus>

up(6E Leer)
<Fahre in GH ein>
up (6FEg # Fre)

Jawﬂ (e:f\)
<Fahre aus GH aus>

<Fahre durch eingleisigen Abschnitts

<Fahre in F ein>
uplein)

up CFS alecf)

}

Mario Delic | Tutoriibung | Ubungswoche 5

!/ Prozess

Fahre_in_richtung_GF

{
d [GF Leer)
down (F belest)
down(en)

<Fahre

<Fahre durch eingleisigen Abschnitt=

<Fahr

aus F aus>

in GH ein>

uplein)

downr (6F 6H E)

<Fahre

<Fahre

UP[

uop(éFeh 7o)
}

aus GH aus>

in GF ein>

R beleyt)

TUTI

De Herediones -
einlA) &)
Fd. 'ea'}/S) 4)
GRodert) b)
GFleer(A) &)
GF6I+ Fre () <)

downlup in notidithe Sproche:
down {Y—hﬁtL) ; Y wird wMi;,tr ldc.'
wp (Y- vl) X wivel mehe voll|

o (X-frei)E X uird wer'ger €r¢ !
up(l(-?re-'):’-’x wird mehr " fiei !

11

(Z m
Ad T1Prodsss B""”"“"}“’h' o

Fahre_in_richtung_F

{
dow (GFbeseiec Pistee)
gun (GEGHfrie Geie

u‘)fcapfr!-‘c_plahc)
<Fahre in GH ein>

up (GFGu{ e Gleise)

down [einglelsg FrtiesGle's)

<Fahre aus GH aus>
<Fahre durch eingleisigen Abschnitt>

<Fahre in F, ein> R
up (eingltivy Freies gleic)
up (Fecetrheflctze)

}

Mario Delic | Tutoriibung | Ubungswoche 5

!/ Prozess
Fahre_in_richtung_GF

{ (ﬂwnl GFfreie PLE."P'Lg)
down (Fb_nehhp(:fu/
down (e 1mleisig FrelesGlers)

<Fahre aus F aus=
<Fahre durch eingleisigen Abschnitt>

<Fahre in GHein= | .
uple elhjl:fu«glmJ

down (GFGifreieGle'se)

<Fahre aus GH aus>

<Fahre in GF ein>

UP (G becptchPlitee)
up (6{36 Wf-eieGleise)
}

TUTI

Del (arctronen

e .‘qj(e,‘y'J FrtesGleatd) &)
FdesetiePlatze(3) &)
gpéurlch(é'frc(// s)

GFe-delletcel) &)
GFGHfreie Geise) c_}

downlup in noliriche Sproche :
down (¥Y-voll) 2 Y wird weriger vdl!
up(X- MU:‘A’ wicel mehe vall‘,_‘

dover (X-frei)E Xuird wewger €re |

up(%- Fre-')gx wird mehr 'frei !

11

