
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 6

Petrinetze
Formalitäten

Petrinetz P = (S,T,F) is ein Tripel aus Mengen von Stellen S, Transitionen T und Kanten F.

Stellen: Modellieren passive Einheiten (Speicherzellen o.ä.). Dargestellt durch Kreise.

Transitionen: Modellieren aktive Einheiten (Prozesse o.ä.). Dargestellt durch Rechtecke.

Kanten: F ⊆ (S × T) ∪ (T × S) → Kanten sind gerichtet und führen entweder von einer
Stelle S zu einer Transition T, oder von einer T zu einer S. → (S × S), (T × T) /∈ F

Kapazität: c : S → N0 ∪ {∞}. c(s) = Maximale Anzahl an Tokens, die Stelle s aufnehmen
kann.

Belegung: M : S → N0 ∪ {∞}. M(s) = Anzahl der Tokens in Stelle s.

Kantengewicht: w : F → N0. w(s,t) = Anzahl der Tokens, die die Kante bzw. Transition t aus
der Stelle s erwartet. w(t,s) = Anzahl der Tokens, die die Transition t in Stelle s reinschreibt.
Mario Delic | Tutorübung | Übungswoche 6 2

Petrinetze
Eigentschaften

Verklemmt
Ein Petrinetz ist verklemmt, wenn keine Transition mehr schalten kann.
Lebendig
Ein Petrinetz ist lebendig, wenn es keinen Zustand gibts, ab der eine beliebige Transition nie
wieder schaltbereit sein wird.
Fair
Ein Petrinetz ist fair, wenn keine Transition verhungern kann.
(Erinnerung Verhungern: Ausführung zwar möglich, könnte aber unendlich lange
hinausgezögert/vermieden werden → Transition tx ist schaltbereit, aber es schaltet immer
nur ty ↪→ tx kann verhungern.)
Nebenläufig
Transitionen sind Nebenläufig, wenn sie unabhängig voneinander Schalten können, ohne
sich in der Vor- und Nachbedingung zu beeinflussen.

Mario Delic | Tutorübung | Übungswoche 6 3

Petrinetze
Funktionalität

• Eine Transition kann nur schalten, wenn alle ihre Vor- und Nachbedingungen erfüllbar sind!
→ Die Stellen aller eingehenden Kanten haben genügend Tokens && die Stellen aller
ausgehenden Kanten haben genug freien Platz.
• Es schaltet immer nur eine Transition zu einer Zeit → Mehrere Transitionen schalten nie
gleichzeitig.
• Sonderfall Bool’sches Netz: Alle Kapazitäten und Kantengewichte = 1!

• Synchronisation in Petrinetzen:
Kapazitäten und Belegungen reichen i.d.R. nicht aus um ein bestehendes Netz effektiv zu
Synchronisieren.
Stattdessen einfacher: ’Deklarieren’ einer extra Mutex/Semaphor-Stelle + Verbinden mit
allen relevanten Transitionen (um den kritischen Bereich herum). Anschließendes
Synchronisieren durch Anpassung der Kapazität/Belegung und der Kantenrichtungen.

Mario Delic | Tutorübung | Übungswoche 6 4

Mario Delic | Tutorübung | Übungswoche 6 5

Mario Delic | Tutorübung | Übungswoche 6 5

Aufgabe 3

Mario Delic | Tutorübung | Übungswoche 6 6

