Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Minchen l] ; "

Ubungswoche 1 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Generelle Agenda

B Kurzes Recap der wichtigsten Vorlesungsinhalte
B Ggf. darGber hinaus relevantes Wissen
B Eventuelle Fragen von euch

B Bearbeitung vom Ubungsblatt
Hinweis:

Alle Inhalte auf den Folien, die nicht von den Aufgaben- oder L6sungsblattern
stammen, sind eigens von mir. Keine Gewéahr oder Anspruch auf Korrektheit.

Mario Delic | Tutoriibung | Ubungswoche 1

Linux, Unix, Posix - was ist das? 'I'I.I'I'I

B Unix: Unix war ein friihes OS welches eine Reihe spaterer OS inspiriert hat (z.B.
Linux/macQOS).

B POSIX: Das Portable OS Interface ist eine standardisierte Prorgammierschnittstelle. Es
enthat wichtige Definitionen und Konzepte, spezifizierungen der
C-Schnittstellen/syscalls, Hilfsprogramme und vieles mehr. Es wurde in 20 Jh. u.a.
basierend auf Unix spezifiziert.

B Unix-like: Man nennt ein OS unix-like, wenn es in seinem verhalten im Allgemeinen
dem des Unix-OS &hnelt.

B Linux: Linux ist ein unix-like OS (Auch wenn Linux offiziell nicht POSIX-compliant ist,
kann man es als quasi solches sehen.) Linux gibt es in verschiedenen Distributionen
welche sich durch ihr Desktop Environment, Packagemanager usw. unterscheiden.

Mario Delic | Tutoriibung | Ubungswoche 1 3

Aufgabe 1

OCoOoO~NOO AWM =

Aufgabe 1 c the difference

Vorbereitung: Vorbereitend auf diese Aufgabe sollten Sie den C-Primer! von Jonas Pfoh lesen.

Die Programmiersprache C verhdlt sich in vielen Aspekien anders als die Ihnen bekannte Sprache Java. Ihr
Tutor wird Ihnen anhand des folgenden Beispielprogramms zur Berechnung der Fakultét einige Grundlagen und

Besonderheiten von € erlautern.

import java.util.Scanner;

public class Fakultaet

{
public static void main (String[] args)
{

Scanner scan = new Scanner (System.in);

int fakultaet = fak(scan.nextInt());

System.out.println("Fakultaet:_ " + fakultaet);

by
private static int fak(int x) {
return x <= 1 2?2 1 (xxfak(x-1));
by
by

Mario Delic | Tutoriibung | Ubungswoche 1

NGO ~WN =

#include <stdlib.h>
#include <stdio.h>

int fak(int);

int main(int argc, char *argv[]) {
char *buf = malloc (100 * sizeof(char));
fgets(buf, 100, stdin);

int fakultaet = fak(atoi(buf));
printf("Fakultaet:_%d\n", fakultaet);
free(buf);

}

int fak(int x) {
return x <= 1 ?2 1
}

(xxfak(x-1));

Aufgabe 1 TUTI

public static void main (String[] args) <> int main()

import <> #include

OOP Zwang +» OOP “Verbot*

Funktionen missen Vorausdeklariert werden, um sie vor der Definition nutzen zu kénnen
Java static: objektunabhangigkeit <+ C static: encapsulation/speicherort

Automatischer Garbagecollector <+ Manuelles Memorymanagement

void* malloc(size_t size): Sucht nach freiem Speicher > size und gibt Pointer auf
diesen zurlick

void free(void* p): Gibt Speicherplatz am Pointer p frei
Auf jedes malloc kommt exakt ein free!
malloc loops ohne free — Memory Leak! Use-After-Free — undefined behavior!

Mario Delic | Tutoriibung | Ubungswoche 1 5

Zahlenentwicklung:

Dezimal:

oo~ N =

—_

6
32
64
128
256
512
1024
2048
4096

Mario Delic | Tutoriibung | Ubungswoche 1

Binar:

20 =1
21 =10
22 =100
23 = 1000
2% =1°0000
25 =10'0000
26 = 100’0000
27 = 1000°0000
28 = 1°0000°0000
29 = 10°0000°0000
210 = 100°0000°0000
211 = 1000°0000°0000
212 = 1°0000°0000°0000

Hex:

0x1
0x2
0x4
0x8
0x10
0x20
0x40
0x80
0x100
0x200
0x400
0x800
0x1000

Aufgabe 2 Tm

Aufgabe 2 Binar- und Dezimalprifixe

Einheitenprafixe dienen dazu, Basiseinheiten zu skalieren. Ein bekanntes Beispiel hierfir ist k (Kilo) in km oder
kg. Im Alltag werden héufig Dezimalpréfixe verwendet, die auf Potenzen der Zahl 10 basieren.

Im Kontext von Betriebssystemen werden jedoch haufig Binarprafixe (Potenzen von 2) verwendet.

Binar Dezimal
Kibi 1024 =2' 1000 =10° Kilo
Mebi 220 108 Mega
Gibi 280 10° Giga
Tebi 240 102 Tera

Mario Delic | Tutoriibung | Ubungswoche 1 7

Aufgabe 2 TUTI

a)* Ubersetzen Sie von Binar- zu Dezimalprafix: 2 KiB, 3 MiB, 4 GiB.
b)* Ubersetzen Sie von Dezimal- zu Binarprafix: 4 kB, 3 MB, 2 GB.

c)* Hersteller von Speichermedien preisen diese mit Kapazitaten an, die auf Dezimalprafixen
basieren. Das fuhrt hdufig zu Verwirrung, da Software meist Binarpréafixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Kaufer
einer externen 2 TB-Festplatte nach dem AnschlieBBen an ein solches System angezeigt?

Mario Delic | Tutoriibung | Ubungswoche 1 8

Aufgabe 2 TUTI

a)* Ubersetzen Sie von Binar- zu Dezimalprafix: 2 KiB, 3 MiB, 4 GiB.

2KiB =2*1024 B = 2048 B = 2,048 kB -DA) A UiB snd 10148 alsq LaA0t4= 700 &
3MiB=3*10242B = 3145728 B~ 3,145 MB 1) famrw shen (Lilo= 46>, un 3uch (k)
4 GiB = 4 * 1024° B = 4294967296 B ~ 4,294 GB

b)* Ubersetzen Sie von Dezimal- zu Binarprafix: 4 kB, 3 MB, 2 GB.

Mario Delic | Tutoriibung | Ubungswoche 1 9

Aufgabe 2 TUTI
a)* Ubersetzen Sie von Binar- zu Dezimalprafix: 2 KiB, 3 MiB, 4 GiB.

2KiB=2*1024 B =2048 B =2,048 kB
3 MiB =3 * 10242 B = 3145728 B ~ 3,145 MB
4 GiB = 4 * 10243 B = 4294967296 B ~ 4,294 GB

b)* Ubersetzen Sie von Dezimal- zu Binarprafix: 4 kB, 3 MB, 2 GB.
ind 4 o 4LaOR

4KB =41 10008~ 3006 KiB | AT DB LIE et i
3 MB =3 * 1000 B = 3000000 B ~ 2929,687 KiB ~ 2,861 MiB LR, ol durch Grofe von
2 GB =2 *1000° B = 2000000000 B ~ 1,862 GiB , e , 3‘

K"& &,U;&[(’f{'ﬂ ‘
(OB wa® 4 3, 30 €13
AKI05 Ao2l®

Mario Delic | Tutoriibung | Ubungswoche 1 10

Aufgabe 2 TUTI

c)* Hersteller von Speichermedien preisen diese mit Kapazitaten an, die auf Dezimalpréafixen
basieren. Das fuhrt hdufig zu Verwirrung, da Software meist Binérpréfixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Kaufer
einer externen 2 TB-Festplatte nach dem Anschlie3en an ein solches System angezeigt?

Mario Delic | Tutoriibung | Ubungswoche 1 11

Aufgabe 2 TUTI

c)* Hersteller von Speichermedien preisen diese mit Kapazitaten an, die auf Dezimalpréafixen
basieren. Das fuhrt hdufig zu Verwirrung, da Software meist Binérpréfixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Kaufer
einer externen 2 TB-Festplatte nach dem Anschlie3en an ein solches System angezeigt?

1,82 TB, ihm ,fehlen® also knapp 10%

Mario Delic | Tutoriibung | Ubungswoche 1 12

Recap
Binar- und Hexarithmethik

Dezimal:
M Basis 10: 0-9

B Umrechnung:
Standard (Bin/Hex):
Division mit Rest durch
2 bzw. 16.

Alternativ (Bin): Zwei-
erpotenzzerlegung.
Alternativ (Hex): Dez
zu Bin, dann Bin zu
Hex.

Mario Delic | Tutoriibung | Ubungswoche 1

Binar:
B Basis 2: 0-1
B Umrechnung:

Standard (Dec): Zwei-
erpotenzsummierung
(0b11°0100 =
25424422 = 324+16+4
= 52)

Standard (Hex): Ein
Nibble (4 Binarziffern)
zur korrespondierenden
Hexziffer Gbersetzten
(0xD = 0b1101 = 13).

Tl

Hex:
M Basis 16: 0-9 und A-F

B Umrechnung:

Standard (Dez):
Sechzehnerpotenz-
summierung (OxBA7 =
7+1410%16+11+256 =
7+ 160 + 2816 = 2983).
Standard (Bin): Ein
Nibble (4 Binérziffern)
zur korrespondierenden
Hexziffer Gbersetzten
(0xC = 0b1100 = 12).

13

Aufgabe 3 Tum

Aufgabe 3 Bin verHext

Im Verlaufe dieser Veranstaltung werden Sie mit Werten in unterschiedlichen Basen umgehen miissen, sowie
diese von einer in die andere Basis Uberfiihren. In GBS sind besonders die Basen 2, 10 und 16 relevant. Das
Umrechnen von Zahlen zwischen diesen Basen sollten Sie unbedingt beherrschen.

Ubersetzen Sie die gegebenen Werte von einer Basis in die Andere.
a)* Binar — Hex

0b101010 e AN =0t 4s T+ = F = OF
0b1(11000111 § M= 3100 AL=0c &
0b1100000011011110 .

Ox 7

Mario Delic | Tutoriibung | Ubungswoche 1

14

Aufgabe 3 TUTI

Aufgabe 3 Bin verHext

Im Verlaufe dieser Veranstaltung werden Sie mit Werten in unterschiedlichen Basen umgehen miissen, sowie
diese von einer in die andere Basis Uberfiihren. In GBS sind besonders die Basen 2, 10 und 16 relevant. Das
Umrechnen von Zahlen zwischen diesen Basen sollten Sie unbedingt beherrschen.

Ubersetzen Sie die gegebenen Werte von einer Basis in die Andere.
a)* Binar — Hex

O0b101010 — Ox2A

0b111000111 — 0x1C7
O0b1100000011011110 — O0xCODE

Mario Delic | Tutoriibung | Ubungswoche 1 15

Aufgabe 3 Tum
b)* Hex — Binar

OXAFFE T,))
OXBADE BeA/= 3+0+ied = |Ol] . A== 81 = (010 D= A3= Fr el =][0

OXxCOFFEE ' \ \ / /

c)* Dezimal — Hex 0L o (o flo o

123
65
262

Mario Delic | Tutoriibung | Ubungswoche 1 16

Aufgabe 3

b)* Hex — Binar

OxAFFE — 0b1010111111111110

OxBADE — 0b1011101011011110

OxCOFFEE — 0b110000001111111111101110

c)* Dezimal — Hex

M% A6 = 7
123 - J/’Q(—é/bw, 413 mod 46 O-V?B
o SN e B
262 Mzg

Mario Delic | Tutoriibung | Ubungswoche 1

17

Aufgabe 3
b)* Hex — Binar
OXAFFE — 0b1010111111111110

0xBADE — 0b1011101011011110
0xCOFFEE — 0b110000001111111111101110

c)* Dezimal — Hex
123 — 0x7B

65 — 0x41
262 — 0x106

Mario Delic | Tutoriibung | Ubungswoche 1

18

Aufgabe 3 Tum

d)* Dezimal — Binar

255 85 -64

99 = 388 6 —= 35231 —> 32//65 -3 > =324 > 327 5327
54 A 1 @) o o g g

of5s 6+ 32 A
e)* Hex — Dezimal ~

= 04 AAoco11/

0xABC
0x64
0x420

Mario Delic | Tutoriibung | Ubungswoche 1 19

Aufgabe 3 Tm

d)* Dezimal — Binar

255 — Ob11111111
99 — 0b1100011
54 — 0b110110

e)* Hex — Dezimal

OXABC —> Ox A< LO0= (0OlO Bz AA = 01
0x64
0x420

LO
Lorues = 2
+ oo = 25

=05 (010 |l [1co
A2 Y
2 N 59/@%

(VD)

Mario Delic | Tutoriibung | Ubungswoche 1

Aufgabe 3

d)* Dezimal — Binar

255 — Ob11111111
99 — 0b1100011
54 — 0b110110

e)* Hex — Dezimal
0xABC — 2748

0x64 — 100
0x420 — 1056

Mario Delic | Tutoriibung | Ubungswoche 1

21

*Pointer&Arithmetik

Asterisk *

In Deklarationen: Hier steht ein Pointer
Als Prafixoperator: Gib mir die Daten, auf die
dieser Pointer zeigt

#include <stdio.h>
main(){

printf(" %d \n %x \n Zp \n", a, a, &a);
return 1;

Mario Delic | Tutoriibung | Ubungswoche 1

Tl

Ampersand &

Als Préafixoperator: Gib mir eine Pointer auf

diese Daten

00eeea24441ffdos
Output

22

*Pointer&Arithmetik

#include <stdio.h>
afunc(i){
i+=5;
return i;

reffunc(int® 1){
*j4=5;
return *i;

main(){
= s
*p = &a;
printf (" %d \n %d \n %d \n %d \n %d \n",
afunc(a), reffunc(&a), afunc(*p), reffunc(p), afunc(a));
return 1;

Mario Delic | Tutoriibung | Ubungswoche 1

*Pointer&Arithmetik

Pointer kbnnen inkrementiert/dekrementiert werden.
Pointer + 1 bedeutet dabei “1 Element des Pointertyps weiter.*
B char*: +1 erh6ht die Adresse um genau 1, da char 1 Byte breit

B int*: +1 erhdht die Adresse um 4, da 4 Byte breit

B void*: laut Standard undefined behavior, Compiler behandeln es aber wie char*
main(){
*ip=e;
¥ cp =0
ip+=1;
cp+=1;
printf("Incremented int pointer: %p \nIncremented char pointer: %p \n", ip, cp);
return 1

Incremented 1nt polnter: 0000000000000004
Incremented char pointer: 0000000000000001

Mario Delic | Tutoriibung | Ubungswoche 1

24

Strings und Arrays TUTI

Strings sind Ketten an chars mit einem terminierenden Nullbyte.

Strings der Form “somestring“ nennt man string literal. Diese landen im (readonly-)data
segment und sind unveranderlich. Wenn man einer Variable ein string literal mittels dem
Assignment Opoerator = zuweist, so assigned man in Wirklichkeit nur einen Pointer.
Ausnahme: ein char-array direkt bei initialisierung ein string literal assignen. Hierbei wird

das Array tatsachlich m|t den einzelnen chars + Nullbyte beflllt.
* rodatastring = " "

stackstring[6] =
puintf‘ strlen(rodatastring s ", strlen(rodatastring)); strlen(rodatastring):

sizeof (rodatastring):

, strlen(stackstring));
rodatastring));

: strlen(stackstring): 5
stackstring));

sizeof (stackstring): 6

Strlen z&hlt die chars bis zum Nullbyte, somit sind beide Strings 5 chars lang.
Sizeof liefert im ersten Fall 8, da rodatastring ein Pointer ist (welcher 8 Byte lang ist).
Im zweiten Fall weiss der Compiler, dass fiir stackstring 6 Byte reserviert wurden.

Mario Delic | Tutoriibung | Ubungswoche 1 25

Strings und Arrays TUTI

Arrays in C sind sehr simpel implementierte Ketten von Elementen gleichen Typs.

Fihrt man Operationen mit dem Array aus wird dieses in fast allen féllen wie ein Pointer (auf
das erste Element) behandelt. Man sagt, es decayed zu einem Pointer.

Der Operator [] zum Zugriff auf ein Arrayelement ist eigentlich nur eine Inkrementierung des
Pointers mit anschlieBender Derenferenzierung:
array[index] ist also semantisch &quivalent zu *(array+index) (vgl. Aufgabe 4).

Arrays sind nicht Nullbyte-terminiert (nur strings)! U.a. deswegen kann man die L&nge nicht
ohne weiteres bestimmen, und sizeof liefert nur die Pointergrée. Es ist also sinnvoll, eine
extra Variable fir die Lange des Arrays zu flhren, falls sie benétigt wird.

Ausnahme: Arrays, deren Lédnge zur compiletime bekannt ist (hier: stackarray).

stackarray[7];
* heaparray = malloc(7 * e

printf(“stack size %sld\n", stackarray)) ; stackarray size is 28
printf("heaparray e is %ld\n", heaparray)) ; heaparray size is 8

Mario Delic | Tutoriibung | Ubungswoche 1 26

Aufgabe 4

Aufgabe 4 Pointerarithmetik und Operatorprizedenz

Die folgenden Deklarationen bilden die Grundlage fir alle Teilaufgaben dieser Aufgabe. Verstehen Sie zunachst,
welche Variablen deklariert und initialisiert werden, und welche Typen diese besitzen.

int arrayXyzZ[10] = {0},

int i = @, intvar = @;

int *pi = @;

for (i = @; i < 10; i++)
arrayXYZ[i] = 1i;

QAW -

a)* Was ist der Inhalt der Variable pi jeweils nach den folgenden Statements?

pi = &arrayXYZ[7];
pi = arrayxXyZ;

pi = &arrayXYZ[e];

b)* Sind die folgenden Zuweisungen aquivalent? Verdeutlichen Sie sich, wie ein Array-Zugriff in C umgesetzt
wird.

W =

-

intVar
intVar
intVar

arrayXYZ[81];
*(arrayXYZ+8);
*(int %) ((veid *) arrayXYZ+(8*sizeof(int)));

wmn

Mario Delic | Tutoriibung | Ubungswoche 1

TUTI

27

Aufgabe 4

c)* Kompilieren die folgenden Statements ohne Warnings oder Errors? Wenn nicht, was ist das Problem?
Kdnnen Fehler zur Laufzeit auftreten? Wie wiirden sich diese Fehler zur Laufzeit auswirken?

i = pi;

intvar = i;

*(arrayXYZ+3) = 3;

arrayXYz[1320] = "a";

arrayXYZ[1] = &*(arrayXYZ + 15);

d)* Was macht der folgende Code? Wofiir wird malloc in C benutzt?

int *array123 = malloc(5 * sizeof(int));

g s wn =

Warum sollten nicht alle Werte in Variablen abgelegt werden, die in der Funktion direkt deklariert wurden?

e) Welche Rolle spielt der Operator sizeof ()? Wieso wird an malloc() nicht 5 als Parameter Gbergeben?

f) Was hat es mit free() auf sich? Inwiefern verhalt sich Java hier anders als C, wieso musste man diese
Funktion in Java nicht nutzen?

Mario Delic | Tutoriibung | Ubungswoche 1

28

