
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 1

Generelle Agenda

■ Kurzes Recap der wichtigsten Vorlesungsinhalte

■ Ggf. darüber hinaus relevantes Wissen

■ Eventuelle Fragen von euch

■ Bearbeitung vom Übungsblatt

Hinweis:
Alle Inhalte auf den Folien, die nicht von den Aufgaben- oder Lösungsblättern
stammen, sind eigens von mir. Keine Gewähr oder Anspruch auf Korrektheit.

Mario Delic | Tutorübung | Übungswoche 1 2

Linux, Unix, Posix - was ist das?

■ Unix: Unix war ein frühes OS welches eine Reihe späterer OS inspiriert hat (z.B.
Linux/macOS).

■ POSIX: Das Portable OS Interface ist eine standardisierte Prorgammierschnittstelle. Es
enthät wichtige Definitionen und Konzepte, spezifizierungen der
C-Schnittstellen/syscalls, Hilfsprogramme und vieles mehr. Es wurde in 20 Jh. u.a.
basierend auf Unix spezifiziert.

■ Unix-like: Man nennt ein OS unix-like, wenn es in seinem verhalten im Allgemeinen
dem des Unix-OS ähnelt.

■ Linux: Linux ist ein unix-like OS (Auch wenn Linux offiziell nicht POSIX-compliant ist,
kann man es als quasi solches sehen.) Linux gibt es in verschiedenen Distributionen
welche sich durch ihr Desktop Environment, Packagemanager usw. unterscheiden.

Mario Delic | Tutorübung | Übungswoche 1 3

Aufgabe 1

Mario Delic | Tutorübung | Übungswoche 1 4

Aufgabe 1

■ public static void main (String[] args) ↔ int main()

■ import ↔ #include

■ OOP Zwang ↔ OOP “Verbot“

■ Funktionen müssen Vorausdeklariert werden, um sie vor der Definition nutzen zu können

■ Java static: objektunabhängigkeit ↔ C static: encapsulation/speicherort

■ Automatischer Garbagecollector ↔ Manuelles Memorymanagement

■ void* malloc(size_t size): Sucht nach freiem Speicher ≥ size und gibt Pointer auf
diesen zurück

■ void free(void* p): Gibt Speicherplatz am Pointer p frei

■ Auf jedes malloc kommt exakt ein free!

■ malloc loops ohne free → Memory Leak! Use-After-Free → undefined behavior!

Mario Delic | Tutorübung | Übungswoche 1 5

Zahlenentwicklung:

Dezimal:

1
2
4
8
16
32
64
128
256
512
1024
2048
4096

Binär:

20 = 1
21 = 10
22 = 100
23 = 1000

24 = 1’0000
25 = 10’0000
26 = 100’0000
27 = 1000’0000

28 = 1’0000’0000
29 = 10’0000’0000

210 = 100’0000’0000
211 = 1000’0000’0000

212 = 1’0000’0000’0000

Hex:

0x1
0x2
0x4
0x8
0x10
0x20
0x40
0x80
0x100
0x200
0x400
0x800
0x1000

Mario Delic | Tutorübung | Übungswoche 1 6

Aufgabe 2

Mario Delic | Tutorübung | Übungswoche 1 7

Aufgabe 2

a)* Übersetzen Sie von Binär- zu Dezimalpräfix: 2 KiB, 3 MiB, 4 GiB.

b)* Übersetzen Sie von Dezimal- zu Binärpräfix: 4 kB, 3 MB, 2 GB.

c)* Hersteller von Speichermedien preisen diese mit Kapazitäten an, die auf Dezimalpräfixen
basieren. Das führt häufig zu Verwirrung, da Software meist Binärpräfixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Käufer
einer externen 2 TB-Festplatte nach dem Anschließen an ein solches System angezeigt?

Mario Delic | Tutorübung | Übungswoche 1 8

Aufgabe 2

a)* Übersetzen Sie von Binär- zu Dezimalpräfix: 2 KiB, 3 MiB, 4 GiB.

2 KiB = 2 * 1024 B = 2048 B = 2,048 kB
3 MiB = 3 * 10242 B = 3145728 B ≈ 3,145 MB
4 GiB = 4 * 10243 B = 4294967296 B ≈ 4,294 GB

b)* Übersetzen Sie von Dezimal- zu Binärpräfix: 4 kB, 3 MB, 2 GB.

Mario Delic | Tutorübung | Übungswoche 1 9

Aufgabe 2

a)* Übersetzen Sie von Binär- zu Dezimalpräfix: 2 KiB, 3 MiB, 4 GiB.

2 KiB = 2 * 1024 B = 2048 B = 2,048 kB
3 MiB = 3 * 10242 B = 3145728 B ≈ 3,145 MB
4 GiB = 4 * 10243 B = 4294967296 B ≈ 4,294 GB

b)* Übersetzen Sie von Dezimal- zu Binärpräfix: 4 kB, 3 MB, 2 GB.

4 kB = 4 * 1000 B ≈ 3,906 KiB
3 MB = 3 * 10002 B = 3000000 B ≈ 2929,687 KiB ≈ 2,861 MiB
2 GB = 2 * 10003 B = 2000000000 B ≈ 1,862 GiB

Mario Delic | Tutorübung | Übungswoche 1 10

Aufgabe 2

c)* Hersteller von Speichermedien preisen diese mit Kapazitäten an, die auf Dezimalpräfixen
basieren. Das führt häufig zu Verwirrung, da Software meist Binärpräfixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Käufer
einer externen 2 TB-Festplatte nach dem Anschließen an ein solches System angezeigt?

Mario Delic | Tutorübung | Übungswoche 1 11

Aufgabe 2

c)* Hersteller von Speichermedien preisen diese mit Kapazitäten an, die auf Dezimalpräfixen
basieren. Das führt häufig zu Verwirrung, da Software meist Binärpräfixe verwendet, jedoch
die falschen Einheiten anzeigt (z.B. GB statt GiB). Wie viel Speicherplatz wird dem Käufer
einer externen 2 TB-Festplatte nach dem Anschließen an ein solches System angezeigt?

1,82 TB, ihm „fehlen“ also knapp 10%

Mario Delic | Tutorübung | Übungswoche 1 12

Recap
Binär- und Hexarithmethik

Dezimal:
■ Basis 10: 0-9

■ Umrechnung:
Standard (Bin/Hex):
Division mit Rest durch
2 bzw. 16.
Alternativ (Bin): Zwei-
erpotenzzerlegung.
Alternativ (Hex): Dez
zu Bin, dann Bin zu
Hex.

Binär:
■ Basis 2: 0-1

■ Umrechnung:
Standard (Dec): Zwei-
erpotenzsummierung
(0b11’0100 =
25+24+22 = 32+16+4
= 52)
Standard (Hex): Ein
Nibble (4 Binärziffern)
zur korrespondierenden
Hexziffer übersetzten
(0xD = 0b1101 = 13).

Hex:
■ Basis 16: 0-9 und A-F

■ Umrechnung:
Standard (Dez):
Sechzehnerpotenz-
summierung (0xBA7 =
7∗1+10∗16+11∗256 =
7 + 160 + 2816 = 2983).
Standard (Bin): Ein
Nibble (4 Binärziffern)
zur korrespondierenden
Hexziffer übersetzten
(0xC = 0b1100 = 12).

Mario Delic | Tutorübung | Übungswoche 1 13

Aufgabe 3

a)* Binär → Hex

0b101010
0b111000111
0b1100000011011110

Mario Delic | Tutorübung | Übungswoche 1 14

Aufgabe 3

a)* Binär → Hex

0b101010 → 0x2A
0b111000111 → 0x1C7
0b1100000011011110 → 0xC0DE

Mario Delic | Tutorübung | Übungswoche 1 15

Aufgabe 3

b)* Hex → Binär

0xAFFE
0xBADE
0xC0FFEE

c)* Dezimal → Hex

123
65
262

Mario Delic | Tutorübung | Übungswoche 1 16

Aufgabe 3

b)* Hex → Binär

0xAFFE → 0b1010111111111110
0xBADE → 0b1011101011011110
0xC0FFEE → 0b110000001111111111101110

c)* Dezimal → Hex

123
65
262

Mario Delic | Tutorübung | Übungswoche 1 17

Aufgabe 3

b)* Hex → Binär

0xAFFE → 0b1010111111111110
0xBADE → 0b1011101011011110
0xC0FFEE → 0b110000001111111111101110

c)* Dezimal → Hex

123 → 0x7B
65 → 0x41
262 → 0x106

Mario Delic | Tutorübung | Übungswoche 1 18

Aufgabe 3

d)* Dezimal → Binär

255
99
54

e)* Hex → Dezimal

0xABC
0x64
0x420

Mario Delic | Tutorübung | Übungswoche 1 19

Aufgabe 3

d)* Dezimal → Binär

255 → 0b11111111
99 → 0b1100011
54 → 0b110110

e)* Hex → Dezimal

0xABC
0x64
0x420

Mario Delic | Tutorübung | Übungswoche 1 20

Aufgabe 3

d)* Dezimal → Binär

255 → 0b11111111
99 → 0b1100011
54 → 0b110110

e)* Hex → Dezimal

0xABC → 2748
0x64 → 100
0x420 → 1056

Mario Delic | Tutorübung | Übungswoche 1 21

*Pointer&Arithmetik

Asterisk *

In Deklarationen: Hier steht ein Pointer
Als Präfixoperator: Gib mir die Daten, auf die
dieser Pointer zeigt

Ampersand &

Als Präfixoperator: Gib mir eine Pointer auf
diese Daten

Output

Mario Delic | Tutorübung | Übungswoche 1 22

*Pointer&Arithmetik

Output

Mario Delic | Tutorübung | Übungswoche 1 23

*Pointer&Arithmetik

Pointer können inkrementiert/dekrementiert werden.
Pointer + 1 bedeutet dabei “1 Element des Pointertyps weiter.“
■ char*: +1 erhöht die Adresse um genau 1, da char 1 Byte breit

■ int*: +1 erhöht die Adresse um 4, da 4 Byte breit

■ void*: laut Standard undefined behavior, Compiler behandeln es aber wie char*

Mario Delic | Tutorübung | Übungswoche 1 24

Strings und Arrays

Strings sind Ketten an chars mit einem terminierenden Nullbyte.

Strings der Form “somestring“ nennt man string literal. Diese landen im (readonly-)data
segment und sind unveränderlich. Wenn man einer Variable ein string literal mittels dem
Assignment Opoerator = zuweist, so assigned man in Wirklichkeit nur einen Pointer.
Ausnahme: ein char-array direkt bei initialisierung ein string literal assignen. Hierbei wird
das Array tatsächlich mit den einzelnen chars + Nullbyte befüllt.

Strlen zählt die chars bis zum Nullbyte, somit sind beide Strings 5 chars lang.
Sizeof liefert im ersten Fall 8, da rodatastring ein Pointer ist (welcher 8 Byte lang ist).
Im zweiten Fall weiss der Compiler, dass für stackstring 6 Byte reserviert wurden.

Mario Delic | Tutorübung | Übungswoche 1 25

Strings und Arrays

Arrays in C sind sehr simpel implementierte Ketten von Elementen gleichen Typs.

Führt man Operationen mit dem Array aus wird dieses in fast allen fällen wie ein Pointer (auf
das erste Element) behandelt. Man sagt, es decayed zu einem Pointer.

Der Operator [] zum Zugriff auf ein Arrayelement ist eigentlich nur eine Inkrementierung des
Pointers mit anschließender Derenferenzierung:
array[index] ist also semantisch äquivalent zu *(array+index) (vgl. Aufgabe 4).

Arrays sind nicht Nullbyte-terminiert (nur strings)! U.a. deswegen kann man die Länge nicht
ohne weiteres bestimmen, und sizeof liefert nur die Pointergröße. Es ist also sinnvoll, eine
extra Variable für die Länge des Arrays zu führen, falls sie benötigt wird.
Ausnahme: Arrays, deren Länge zur compiletime bekannt ist (hier: stackarray).

Mario Delic | Tutorübung | Übungswoche 1 26

Aufgabe 4

Mario Delic | Tutorübung | Übungswoche 1 27

Aufgabe 4

Mario Delic | Tutorübung | Übungswoche 1 28

