
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 2

Begrifflichkeiten
Betriebsarten

• Stapelverarbeitung:
Keine Nutzerinteraktion, der Ablauf des Programms ist bereits definiert. Anwendung oft
bei großen/monotonen Aufgabenmengen.

• Transaktionsbetrieb:
Muss Atomarität, Konsistenz etc. gewährleisten. Zu finden z.B. bei Datenbanken.

• Dialogbetrieb:
Benutzer und BS interagieren miteinander. Beispielsweise Desktopbetriebssysteme.

• Echtzeitbetrieb:
Eine maximale Reaktionszeit darf nicht überschritten werden. Zu finden z.B. in der
Robotik.

Mario Delic | Tutorübung | Übungswoche 2 2

Begrifflichkeiten
BS Typen

Monolithische Systeme: BS als ein großes Programm ausgeführt.
• BS permanent im Kernel-Mode (privilegierter Modus) und Arbeitsspeicher.

• Möglichkeit für ein breites Funktionsspektrum und viel Flexibilität.

• Weniger Strukturiert, somit schwerer zu Warten.

• Anfällig für schwere crashes.
Mikrokernel Systeme: Kleinerer Kern durch weniger Funktionen.
• Reduzierung der Fehleranfälligkeit durch aufteilen in Module. Nur der Mikrokern im

Kernel-Mode.

• Mikrokern bieten nur noch Basismechanismen. Er ist kleiner, sicherer und leichter
wartbar.

• Subsysteme laufen im User-Modus ohne Privilegien.

Mario Delic | Tutorübung | Übungswoche 2 3

Generelles BS-Wissen

Aufgaben des Betriebssystems sind Abstraktion und (Ressourcen-)Management.

• Kernel-Mode: Privilegierter Modus mit direktem Zugriff auf physische Komponenten
(Hardware, Maschinenbefehle) und kritische Daten (Systemcode).
• User-Mode: Für alle regulären Programme. Keine Privilegien wie direkter
Hardware-Zugriff etc.
→ Kernel-Mode und root-Rechte bei usern (Nsutzung von sudo usw.) sind nicht das gleiche!

• System calls sind Funktionen die als Schnittstelle agieren, damit eine User-Anwendung
privilegierte Dienste anfragen kann. Die Funktion formatiert ggf. Daten und bereitet die
Register vor, um anschließend die ASM-Funtkion syscall aufzurufen.

Mario Delic | Tutorübung | Übungswoche 2 4

Programm im Speicher

• Text/Code-Segment: Enthält den auzuführenden Programmcode.
• Data-Segment: Konstanten und reservierte Variablen (statische/globale Variabeln).
• Heap: Für dynamische Speicherallokation (z.B. malloc).
• Stack: Kontrollflussstruktur; hier landen Auto-Variablen, Rücksprungadressen, usw.

Mario Delic | Tutorübung | Übungswoche 2 5

Operatorpräzedenz
C-Lesen

Zur Evaluierung und Veranschaulichung der Operatorreihenfolge kann man die relevanten
Strukturen jeweils 1:1 in die englische Sprache überführen:

• x: “declare x as” oder “x is”

• *: “pointer to”

• &: “reference to”

• []: “array of” ↪→ [length]: “array of length”

• (): “function returning” ↪→ (type): “function (with type argument) returning”

Mario Delic | Tutorübung | Übungswoche 2 6

Operatorpräzedenz

In C gelten u.a die folgenden Präzedenzregeln:

https://en.cppreference.com/w/c/language/operator_precedence

char *efg[5]();

short (**(*hij)(void));

Mario Delic | Tutorübung | Übungswoche 2 7

Operatorpräzedenz

In C gelten u.a die folgenden Präzedenzregeln:

https://en.cppreference.com/w/c/language/operator_precedence

char *efg[5]();
efg is array of 5 function returning
pointer to char

short (**(*hij)(void));

Mario Delic | Tutorübung | Übungswoche 2 8

Operatorpräzedenz

In C gelten u.a die folgenden Präzedenzregeln:

https://en.cppreference.com/w/c/language/operator_precedence

char *efg[5]();
efg is array of 5 function returning
pointer to char

short (**(*hij)(void));
hij is pointer to function with no
arguments returning pointer to
pointer to short

Mario Delic | Tutorübung | Übungswoche 2 9

Aufgabe 1
Operatorpräzedenz

[] (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdrücke gelesen werden:

a) long **foo[7];

b) unsigned long int **x();

c) char *(*(**foo [][8])())[];

d) int (*(*foo)(void))[];

Mario Delic | Tutorübung | Übungswoche 2 10

Aufgabe 1
Operatorpräzedenz

[] (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdrücke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();

c) char *(*(**foo [][8])())[]; ´

d) int (*(*foo)(void))[];

Mario Delic | Tutorübung | Übungswoche 2 11

Aufgabe 1
Operatorpräzedenz

[] (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdrücke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();
x is function returning pointer to pointer to unsigned long int
c) char *(*(**foo [][8])())[];

d) int (*(*foo)(void))[];

Mario Delic | Tutorübung | Übungswoche 2 12

Aufgabe 1
Operatorpräzedenz

[] (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdrücke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();
x is function returning pointer to pointer to unsigned long int
c) char *(*(**foo [][8])())[];
foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char
d) int (*(*foo)(void))[];

Mario Delic | Tutorübung | Übungswoche 2 13

Aufgabe 1
Operatorpräzedenz

[] (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdrücke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();
x is function returning pointer to pointer to unsigned long int
c) char *(*(**foo [][8])())[];
foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char
d) int (*(*foo)(void))[];
foo is a pointer to function with no arguments returning pointer to array of int

Mario Delic | Tutorübung | Übungswoche 2 14

Aufgabe 2
Hexdump

Gegeben sei ein Hexdump.

Außerdem:
• 32-bit Architektur

• Integer 32-bit breit

• little-endian

a) Wie viele Hex-Zeichen umfasst eine Speicheradresse im obigen Hexdump?

b) Nehmen wir an, an der Adresse 0x8c ist ein Pointer gespeichert. Wie lautet die
Adresse, auf die der Pointer zeigt? Beachten Sie die endianness der Architektur!

Mario Delic | Tutorübung | Übungswoche 2 15

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0000 89 50 4e 47 0d 0a 1a 0a ff 00 00 00 49 48 44 52
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64
0x0030 47 42 53 00 88 00 00 00 4d 00 00 0f 61 00 00 0f
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6c 6f 74 6c 69
0x0060 f1 20 f5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 a1 ff f1 cf 6c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 b1 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutorübung | Übungswoche 2 16

Aufgabe 2
Hexdump

c) Bestimmen Sie die Ausgaben des folgenden Programms, ausgeführt im Kontext des
obigen Speicherausschnitts:

Mario Delic | Tutorübung | Übungswoche 2 17

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0000 89 50 4e 47 0d 0a 1a 0a ff 00 00 00 49 48 44 52 char *x = 0x30
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 printf ("%s",x);
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64
0x0030 47 42 53 00 88 00 00 00 4d 00 00 0f 61 00 00 0f
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6c 6f 74 6c 69
0x0060 f1 20 f5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 a1 ff f1 cf 6c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 b1 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutorübung | Übungswoche 2 18

Aufgabe 2
Hexdump

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0000 89 50 4e 47 0d 0a 1a 0a ff 00 00 00 49 48 44 52 char *x = 0x30;
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 printf ("%s",x+0x46);
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64
0x0030 47 42 53 00 88 00 00 00 4d 00 00 0f 61 00 00 0f
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6c 6f 74 6c 69
0x0060 f1 20 f5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 a1 ff f1 cf 6c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 b1 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80Mario Delic | Tutorübung | Übungswoche 2 19

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0000 89 50 4e 47 0d 0a 1a 0a ff 00 00 00 49 48 44 52 int *i = 0xd0;
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 int a = i [1];
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",a);
0x0030 47 42 53 00 88 00 00 00 4d 00 00 0f 61 00 00 0f
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6c 6f 74 6c 69
0x0060 f1 20 f5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 a1 ff f1 cf 6c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 b1 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutorübung | Übungswoche 2 20

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0000 89 50 4e 47 0d 0a 1a 0a ff 00 00 00 49 48 44 52 int *i = 0xd0;
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 int b = * (int*) *i;
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",b);
0x0030 47 42 53 00 88 00 00 00 4d 00 00 0f 61 00 00 0f
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6c 6f 74 6c 69
0x0060 f1 20 f5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 a1 ff f1 cf 6c 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 b1 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutorübung | Übungswoche 2 21

Aufgabe 3
Sichere Programmierung

a)

b)

Mario Delic | Tutorübung | Übungswoche 2 22

Aufgabe 3
Sichere Programmierung

a)

Die Funktion gets setzt kein Limit an den einzuesenden String und führt somit zu
Buffer-Overflow!

b)

Mario Delic | Tutorübung | Übungswoche 2 23

Aufgabe 3
Sichere Programmierung

a)

Die Funktion gets setzt kein Limit an den einzuesenden String und führt somit zu
Buffer-Overflow!

b)

Scanf liest hier zwar nur so viele Zeichen ein wie in den Buffer passen ein (256),
aber ist der Input 256 Zeichen lang, so wird der NULL-Terminator am Ende hinter
das Array geschrieben!

Mario Delic | Tutorübung | Übungswoche 2 24

Aufgabe 3
Sichere Programmierung

c)

d)

Mario Delic | Tutorübung | Übungswoche 2 25

Aufgabe 3
Sichere Programmierung

c)

Die Makros werden als erster Schritt vom Präprozessor aufgelöst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1 ∗ 3 + 6 = 13
berechnet, anstelle von (4 + 1) ∗ (3 + 6) = 45 ! Eine Sinngemäße Definition des
Makros wäre: #define MUL (x , y) ((x) * (y))

d)

Mario Delic | Tutorübung | Übungswoche 2 26

Aufgabe 3
Sichere Programmierung

c)

Die Makros werden als erster Schritt vom Präprozessor aufgelöst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1 ∗ 3 + 6 = 13
berechnet, anstelle von (4 + 1) ∗ (3 + 6) = 45 ! Eine Sinngemäße Definition des
Makros wäre: #define MUL (x , y) ((x) * (y))

d)

Nur p1 ist ein int-pointer! Der Typ von p2 ist int! Der Asterisk ist der Variable
zugeordnet, nicht dem Typen.

Mario Delic | Tutorübung | Übungswoche 2 27

Aufgabe 3
Sichere Programmierung

e)

f)

Mario Delic | Tutorübung | Übungswoche 2 28

Aufgabe 3
Sichere Programmierung

e)

Use-After-Free!

f)

Mario Delic | Tutorübung | Übungswoche 2 29

Aufgabe 3
Sichere Programmierung

e)

Use-After-Free!

f)

int* list ist uninitialisiert! Der Wert von list könnte somit irgendwas sein.
Stattdessen: int* list = NULL;

Mario Delic | Tutorübung | Übungswoche 2 30

