Lehrstuhl fir Connected Mobility
School of Computation, Information and Technology
Technische Universitat Miinchen

Grundlagen: Betriebssysteme und

Systemsoftware

Tutoriibung = \ S

Mario Delic L3 g__,_m

Lehrstuhl fir Connected Mobility . @ i @ ‘-

School of Computation, Information and Technology | L @*

Technische Universitat Minchen l] ; "

Ubungswoche 2 It l M LWL}
:ri?gp 1 .' T
R e S, B e A R —— S ¥ . T

Begrifflichkeiten TUTI

Betriebsarten

e Stapelverarbeitung:
Keine Nutzerinteraktion, der Ablauf des Programms ist bereits definiert. Anwendung oft
bei groBen/monotonen Aufgabenmengen.
e Transaktionsbetrieb:
Muss Atomaritat, Konsistenz etc. gewéhrleisten. Zu finden z.B. bei Datenbanken.
¢ Dialogbetrieb:
Benutzer und BS interagieren miteinander. Beispielsweise Desktopbetriebssysteme.
e Echtzeitbetrieb:

Eine maximale Reaktionszeit darf nicht Gberschritten werden. Zu finden z.B. in der
Robotik.

Mario Delic | Tutoriibung | Ubungswoche 2 2

Begrifflichkeiten TUTI

BS Typen

Monolithische Systeme: BS als ein groBes Programm ausgefihrt.
e BS permanent im Kernel-Mode (privilegierter Modus) und Arbeitsspeicher.

o Mdglichkeit fir ein breites Funktionsspektrum und viel Flexibilitat.
e Weniger Strukturiert, somit schwerer zu Warten.

o Anféllig fir schwere crashes.
Mikrokernel Systeme: Kleinerer Kern durch weniger Funktionen.
e Reduzierung der Fehleranfalligkeit durch aufteilen in Module. Nur der Mikrokern im
Kernel-Mode.
e Mikrokern bieten nur noch Basismechanismen. Er ist kleiner, sicherer und leichter
wartbar.

e Subsysteme laufen im User-Modus ohne Privilegien.

Mario Delic | Tutoriibung | Ubungswoche 2

Generelles BS-Wissen T|.|T|

Aufgaben des Betriebssystems sind Abstraktion und (Ressourcen-)Management.

¢ Kernel-Mode: Privilegierter Modus mit direktem Zugriff auf physische Komponenten
(Hardware, Maschinenbefehle) und kritische Daten (Systemcode).

e User-Mode: Fir alle regularen Programme. Keine Privilegien wie direkter
Hardware-Zugriff etc.

— Kernel-Mode und root-Rechte bei usern (Ngutzung von sudo usw.) sind nicht das gleiche!

¢ System calls sind Funktionen die als Schnittstelle agieren, damit eine User-Anwendung
privilegierte Dienste anfragen kann. Die Funktion formatiert ggf. Daten und bereitet die
Register vor, um anschlieBend die ASM-Funtkion syscall aufzurufen.

Mario Delic | Tutoriibung | Ubungswoche 2 4

Programm im Speicher

e Text/Code-Segment: Enthalt den auzufihrenden Programmcode.

e Data-Segment: Konstanten und reservierte Variablen (statische/globale Variabeln).
e Heap: Fiir dynamische Speicherallokation (z.B. malloc).

e Stack: Kontrollflussstruktur; hier landen Auto-Variablen, Riicksprungadressen, usw.

O~

O« FF-. - .
Mario Delic | Tutorlibung | Ubungswoche 2

Operatorprazedenz TUTI

C-Lesen

Zur Evaluierung und Veranschaulichung der Operatorreihenfolge kann man die relevanten
Strukturen jeweils 1:1 in die englische Sprache tberfihren:

e X: “declare x as” oder “x is”
-

*: “pointer to”

&: “reference to”

[1: “array of” < [length]: “array of length”

(): “function returning” < (type): “function (with type argument) returning”

Mario Delic | Tutoriibung | Ubungswoche 2 6

Operatorprazedenz TUTI

In C gelten u.a die folgenden Prazedenzregeln:

/l Q\g\\ 2/0{5&3 Odl &

Precedence Operator Description Associativity

- Suffix/postfix increment and decrement Left-to-right ’L
0 Function call R o
1 [1 Array subscripting Char kefg [5] () ; s) QM/\(."’ Or\
Structure and union member access
-> Structure and union member access through pointer P .
(type) {1ist} Compound literalicog) e ShOI‘T. w % (*hlJ) (VOld)) ;
- Prefix increment and decrement!note 11 Right-to-left
+ - Unary plus and minus
I~ Logical NOT and bitwise NOT
(type) Cast
2 * Indirection (dereference)
& Address-of
sizeof Size-oftnote 21
_Alignof Alignment requirementi(c11)
3 */% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2 7

Operatorprazedenz

In C gelten u.a die folgenden Prazedenzregeln:

Precedence Operator Description Associativity
- Suffix/postfix increment and decrement Left-to-right
() Function call
1 [1 Array subscripting
Structure and union member access
-> Structure and union member access through pointer
(type) {1ist} Compound literal(cog)
- Prefix increment and decrement!note 11 Right-to-left
+ - Unary plus and minus
I~ Logical NOT and bitwise NOT
(type) Cast
2 * Indirection (dereference)
& Address-of
sizeof Size-oftnote 21
_Alignof Alignment requirementi(c11)
3 */% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2

5 4 1 >
char ‘”efg[S] O;

p efg is array, of 5 function returning

pointer to char
4 5

short (**(*hij) (void));

Operatorprazedenz

Precedence Operator

3
4

++ - -
0
[1

->
(type) {list}

++ -

sizeof
_Alignof
*/%

-

Associativity
Left-to-right

Description

Suffix/postfix increment and decrement

Function call

Array subscripting

Structure and union member access

Structure and union member access through pointer
Compound literal(ces)

Prefix increment and decrement(note 1] Right-to-left
Unary plus and minus

Logical NOT and bitwise NOT

Cast

Indirection (dereference)

Address-of

Size-oftnote 21

Alignment requirementi(c11)
Multiplication, division, and remainder Left-to-right
Addition and subtraction

https://en.cppreference.com/w/c/language/operator_precedence

Mario Delic | Tutoriibung | Ubungswoche 2

NP unct (ved))

In C gelten u.a die folgenden Prazedenzregeln: F

uned ()

>

> K{\uf;cl

char *efg[5]1Q);
efg is array of 5 function returning
pointer to char

short (**(*hij) (void));
hij is pointer to function with no
arguments returning pointer to
pointer to short

Aufgabe 1 TUTI

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];
b) unsigned long int **x();

¢) char *(*(**foo [1[81)O)[];
d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 10

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];
foo is array of 7 pointer to pointer to long
b) unsigned long int **x();

¢) char *(*(**foo [1[81)O)I[1; ~
d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 11

Aufgabe 1 TUTI

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **fool7];

foo is array of 7 pointer to pointer to long
b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int
c) char *(*(**foo [1[81)Q)[1;

9 _ .
O (Y o r’ 9 ! >, / -
d) int (-«*(*fgo)(voi/ci))[];“r o (> 0779y Rf“‘ v O([POk fo oot

o —’lﬂu/lCA‘o/) V‘Z{‘«(/f)[’? fbfﬂ"fer * g/raj

Mk iy {wﬂczzﬂm sedanlo

OP cnas

Mario Delic | Tutoriibung | Ubungswoche 2 12

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];

foo is array of 7 pointer to pointer to long

b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int

¢) char *(*(**foo [1[81)O)I[1;

foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char

d) int (*(*foo) (void))[];

Mario Delic | Tutoriibung | Ubungswoche 2 13

Aufgabe 1 Tm

Operatorprazedenz

[1 (Array) und () (Funktion) werden von links nach rechts abgearbeitet und haben Vorrang
vor * (Pointer/Dereferenzierung) und & (Adresse), welche von rechts nach links abgearbeitet
werden. Bestimmen Sie davon ausgehend, wie die folgenden Ausdriicke gelesen werden:

a) long **foo[7];

foo is array of 7 pointer to pointer to long

b) unsigned long int **x();

x is function returning pointer to pointer to unsigned long int

¢) char *(*(**foo [1[81)O)I[1;

foo is array of array of 8 pointer to pointer to function returning pointer to array of
pointer to char

d) int (*(*foo) (void))[];

foo is a pointer to function with no arguments returning pointer to array of int

Mario Delic | Tutoriibung | Ubungswoche 2 14

Gl le endion us B}J Endion

Aufgabe 2
Hexdump 30 4% FRCA

1z
Gegeben sei ein Hexdump. ,ﬁ L= S

e 32-bit Architektur
o Integer 32-bit breit
o little-endian

N |
Bo GlHle Edion wodn e %i; des D=tertyps
ﬂﬁ‘f”‘py#h wn varae roch hiattA

a) Wie viele Hex- Zeichen umfasst eine Speicheradresse im obigen Hexdump?
& oy wel 3l-44 | A8 ye< A2 =5>
b) Nehmen wir an, an dgr Adresse 0x8c ist eln Pomter gespeichert. Wie lautet die

Adresse, auf die der Pointer zeigt? Beachten Sie die endianness der Architektur!

Mario Delic | Tutoriibung | Ubungswoche 2 15

Aufgabe 2

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF

0x0000 89 50 4e 47 0d Oa la 0a £ff 00 00 00 49 48 44 52
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64
0x0030 47 42 53 00 838 00 00 00 4d 00 00 0f 61 00 00 Of
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢c 6f 74 6¢c 69
0x0060 f1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20

0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00,74-6c_69 -

0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00_20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 al ff fI cf 6¢ 85
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05
0x00c0 c4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a
0x00d0 08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00£f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80

Mario Delic | Tutoriibung | Ubungswoche 2

Ox S

)
=

—> O 44 4500 x)

16

Aufgabe 2 Tm

Hexdump

c) Bestimmen Sie die Ausgaben des folgenden Programms, ausgefiihrt im Kontext des
obigen Speicherausschnitts:

char *xx = (charx) 0x30;

intx i = (intx) 0Oxdo;

printf(”"Some_string:_%s\n", x);
printf(”"Some_other_string:_%s\n", x+0x46);

int a if1];
int b = *x(intx*)=*i;
printf(”"a:_%d,_b:_%d\n", a, b);

CoOo~NoOoOh wWhN =

Mario Delic | Tutoriibung | Ubungswoche 2 17

Aufgabe 2

OFFSET 00 01 02

0x0000 89 50 4e
0x0010 00 00 05
0x0020 aa 00 0

0x0930<13f4%‘5%
0x0040 B1 01 a8
0x0050 66 74 77
0x0060 f1 20 £5
0x0070 68 74 74
0x0080 62 2e 6f
0x0090 41 54 78
0x00a0 5d 76 97
0x00b0 18 63 bb
0x00c0 c4 44 62
0x00d0 08 00 00
0x00e0 49 f6 cb6
0x00£0 87 39 33

03 04

47 od
00 00
00 a7
00' 88
3f a7
61 72
65 72
70 3a
72 67
9c ec
be 85
37 a2
12 4d
00 39
58 00
df 59

05

Oa
00
73
00
69
65
73
2f
2f
dd
de
49
31
05
dd
75

06

la
02
42
00
00
00
69
73
10
77
62
ae
d7
00
e5
9d

Mario Delic | Tutoriibung | Ubungswoche 2

07

Oa
82
49
00
00
6d
6f
74
66
9c
69
29
80
00
ec
9

08

ff
08
54
4d
00
61
6e
72
17
54
6e
eb
bl
b2
ce
ce

09

00
06
08
00
38
74
33
69
19
e5
67
17
5f
d4
7e
73

0A

00
00
08
00
74
70
2e
be
00
al
6f
d4
5b
2d
de
9e

0B

00
00
08
0f
45
6¢C
31
67
00
ff
00
28
12
2¢C
af
27

0C

49
00
08
61
58
6f
2e
00
20
f1
a4
22
51
db
d7
12

0D

48
8e
7cC
00
74
74
31
74
00
cf
05
45
41
cf
bc
04

OE

44
3b
08
00
53
6¢C
2¢C
6cC
49
6cC
93
16
20
ef
S5e
41

OF S
52 char *x =)0x30
74 printf ("%s"{X);
64 o
of
6f
&G 2
s Cr]
20 vy K
69 5
4q 453 S
85 o)
dc
05 .
8a A
8f <
3c "7 GRS
80 %

18

Aufgabe 2

Hexdump

OFFSET

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0

00

89
00
aa
47
61
66
f1
68
62
41
5d
18
c4
08
49

01

50
00
00
42
01
74
20
74
2e
54
76
63
44
00
6

02

4e
05
00
53
a8
77
£5
74
6f
78
97
bb
62
00
cb

03

47
00
00
00
3f
61
65
70
72
9c
be
37
12
00
58

04

od
00
a7
88
a7
72
72
3a
67
ec
85
a2
4d
39
00

05

Oa
00
73
00
69
65
73

2f
dd
de
49
31
05
dd

06

la
02
42
00
00
00

07
0a
82
49
00
00
6d

08

ff
08
54
4d
00
61

fffffff

10
77
62
ae
d7
00
e5

66
9c
69
29
80
OO

RO BRI udRibdAg bardsd ot f9

17
54
6e
eb
bl
b2
ce
ce

09

00
06
08
00
38
74
33

19
e5
67
17
5f
d4
7e
73

0A
00
00
08
00
74
70
2e

00
al
6f
d4
S5b
2d
de
9e

0B

00
00
08
0of
45
6¢C
31

00
ff
00
28
12
2¢C
af
27

0C

49
00
08
61
58
6f
2e

20
f1
a4
22
51
db
d7
12

0D

48
8e
7cC
00
74
74
31

00
cf
05
45
41
cf
bc
04

OE

44
3b
08
00
53
6cC
2C
6cC
49
6¢C
93
16
20
ef
Se
41

Tl

OF

52 char *x = 0x30;
74 printf ("%s",x+0x4625
64 Oy 0+ O 45

of
6f = 7S

69

20 07 £5 03 s
69 .
44

85

dc

05

8a
8f =
3c

80 19

7 LE‘D Ok 24 4

S“& r‘;/jj

Aufgabe 2 TUTI

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF
0x0000 89 50 4e 47 0d Oa la 0a ff 00 00 00 49 48 44 52 int *i = 0xdO;

0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 int a = e‘la]; "[43:#/(,',_/_)
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",a);

0x0030 47 42 53 00 838 00 00 00 4d 00 00 0f 61 00 00 Of { L

0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f v D O)(d)[f

0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢c 6f 74 6¢c 69
0x0060 £1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6¢c 69
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44
0x0090 41 54 78 9c ec dd 77 9c 54 e5 al ff f1 cf 6¢c 85 (im Speiches 534 olles
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc e Hex)
0x00b0 18 63 bb 37 a2 49 ae 29 e6 17 d4 28 22 45 16 05 '
0x00cO c4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a =
0x00d0 08 00 00 0Q(39 05 00 00 b2 d4 2d 2c db cf ef 8f
0x00e0 49 6 ¢6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c
0x00£0 87 39 33 df 59 75 9d £9 ce 73 9e 27 12 04 41 80

35 05 006 5O

b
w
w
N

Mario Delic | Tutoriibung | Ubungswoche 2 20

Aufgabe 2 TUTI

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF

T e dedemrelerer
0x0000 89 50 4e 47 0d 0a la Oa/ff 00 00 0049 48 44 52 int *i = 0xd0; — Westan
0x0010 00 00 05 00 00 00 02 82 08 06 00 00 00 8e 3b 74 int b = _* gint*)
0x0020 aa 00 00 00 a7 73 42 49 54 08 08 08 08 7c 08 64 printf ("%d",b); O dO aus-
0x0030 47 42 53 00 88 00 00 00 4d DO 00 Of 61 00 00 Of lesen
0x0040 61 01 a8 3f a7 69 00 00 00 38 74 45 58 74 53 6f O«<(B A DO
0x0050 66 74 77 61 72 65 00 6d 61 74 70 6¢c 6f 74 6¢c 6940 LE = O.0F%
0x0060 f1 20 £5 65 72 73 69 6f 6e 33 2e 31 2e 31 2c 20
0x0070 68 74 74 70 3a 2f 73 74 72 69 6e 67 00 74 6c 69 O~ (¥ wirdd 2v in}* gumsted
0x0080 62 2e 6f 72 67 2f 10 66 17 19 00 00 20 00 49 44 - ‘
0%0090 41 54 78 9¢ ec dd 77 9¢ 54 e5 al £F £1 of 6o g5 O s e infepreties
0x00a0 5d 76 97 be 85 de 62 69 6e 67 6f 00 a4 05 93 dc 7,bb) i) & folnks COLOE do-
0x00b0 18 63 bb 37 a2 49 ae 29 6 17 d4 28 22 45 16 05 ;0 v.2 . . | _ 4 Buje
0x00c0 c4 44 62 12 4d 31 d7 80 bl 5f 5b 12 51 41 20 8a J
0x00d0 (08 00 00 00 39 05 00 00 b2 d4 2d 2c db cf ef 8f leson win {L D DO rmes
0x00e0 49 £f6 c6 58 00 dd e5 ec ce 7e de af d7 bc 5e 3c \LUH(Q andion/
0x00f0 87 39 33 df 59 75 9d f9 ce 73 9e 27 12 04 41 80 :

Oc= 255

Mario Delic | Tutoriibung | Ubungswoche 2 21

Aufgabe 3

Sichere Programmierung
a)

1 char userinput[256];
2 gets(userinput);

1 char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);

Mario Delic | Tutoriibung | Ubungswoche 2

22

Aufgabe 3 Tum

Sichere Programmierung

a)
1 char userinput[256];
2 gets(userinput);

Die Funktion gets setzt kein Limit an den einzuesenden String und fiithrt somit zu
Buffer-Overflow!
b)

1 «char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);

Mario Delic | Tutoriibung | Ubungswoche 2

23

Aufgabe 3

Sichere Programmierung

a)
1 char userinput[256];
2 gets(userinput);

Die Funktion gets setzt kein Limit an den einzuesenden String und fiithrt somit zu
Buffer-Overflow!
b)

1 «char userinput[256] = {0};
2 int ret = scanf("%256s", userinput);

Scanf liest hier zwar nur so viele Zeichen ein wie in den Buffer passen ein (256),
aber ist der Input 256 Zeichen lang, so wird der NULL-Terminator am Ende hinter

das Array geschrieben!

Mario Delic | Tutoriibung | Ubungswoche 2

24

Aufgabe 3

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);

1 int *pl1, p2;

Mario Delic | Tutoriibung | Ubungswoche 2

25

Aufgabe 3

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);

Die Makros werden als erster Schritt vom Praprozessor aufgeldst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1«3+ 6 = 13

berechnet, anstelle von (4 + 1) % (3 + 6) = 45 ! Eine SinngemaBe Definition des

Makros ware: #define MUL (x, y) ((x) * (y))

d)
1 int *pl1, p2;

Mario Delic | Tutoriibung | Ubungswoche 2 26

Aufgabe 3

Sichere Programmierung

c)
1 #define MUL(x,y) x*y
2 int y = MUL(4+1, 3+6);

Die Makros werden als erster Schritt vom Praprozessor aufgeldst. Dabei findet
jedoch eine reine textuelle Ersetzung statt (und keine “logische” Ersetzung mit
Klammerung wie bei Ersetzung von Variablen)! Also wird 4 + 1«3+ 6 = 13

berechnet, anstelle von (4 + 1) % (3 + 6) = 45 ! Eine SinngemaBe Definition des

Makros waére: #define MUL (x ,y) ((x) * (y))
d)
1 int *pl1, p2;
Nur p1 ist ein int-pointer! Der Typ von p2 ist int! Der Asterisk ist der Variable
zugeordnet, nicht dem Typen.

Mario Delic | Tutoriibung | Ubungswoche 2

27

Aufgabe 3
Sichere Programmierung
e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("*xp_is_%d", *p);
f)
1 intx list;
2 if (list == NULL) {
3 list = malloc(LIST_SIZE);
4 3

Mario Delic | Tutoriibung | Ubungswoche 2

28

Aufgabe 3

Sichere Programmierung

e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("*p_is._%d", *p);
Use-After-Free!

f)

1 intx list;

2 if (list == NULL) {

3 list = malloc(LIST_SIZE);
4 3}

Mario Delic | Tutoriibung | Ubungswoche 2

29

Aufgabe 3

Sichere Programmierung

e)
1 int *p = malloc(sizeof =xp);
2 scanf("%d", p);
3 free(p);
4 printf("xp_is_%d", *p);
Use-After-Free!

f)
1 intx list;
2 if (list == NULL) {
3 list = malloc(LIST_SIZE);
4 3}

int* list ist uninitialisiert! Der Wert von list kdnnte somit irgendwas sein.
Stattdessen: int* list = NULL;

Mario Delic | Tutoriibung | Ubungswoche 2

30

