
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 3

Prozesse
Basics

Ein Prozess stellt ein Programm in Ausführung da. Er gruppiert Ressourcen und besitzt
einen Kontrollfluss.

Threads stellen einen Kontrollfluss dar. Sie sind Aktivitätsträger.

User-Level Threads: Durch eine Programmbibliothek im implementiert. BS hat keine
Kenntnis. ’Simulierte’ Nebenläufigkeit.
Kernel-Level Threads: Der Kernel sieht und verwaltet die Threads. ’Echte’ Nebenläufigkeit
möglich.

Mario Delic | Tutorübung | Übungswoche 3 2

Prozesse
Zustände

Mario Delic | Tutorübung | Übungswoche 3 3

Prozesse
Erzeugung

fork(): Systemcall zur Erzeugung eines Kindprozesses.
Der Kindprozess ist eine Kopie des Elternprozesses und erbt seine Daten. Copy-on-write
memory wird dabei erst kopiert, wenn schreibend darauf zugegriffen wird.

Return-value: im parent = child PID; im child = 0.

Kommunikation durch z.B. Signale: (kill(int pid, int signal): Sende ein Signal an Prozess
pid; exit(...): Beendet Prozess.)

pthread_create(...): Funktion zur erstellung eines neuen Threads.
(phtread_join(pthread t, ...) Aufrufernder Thread wartet bis t fertig ist; phtread_exit(...):
Thread wird beendet.)

Mario Delic | Tutorübung | Übungswoche 3 4

Prozesse
Attribute

Mario Delic | Tutorübung | Übungswoche 3 5

Aufgabe 1
Scheduling

Es seien 3 Prozesse (P1, P2, P3) gegeben.
Ihre Ankunftszeit Ai am Scheduler sei jeweils (0, 5, 2).
Ihre Rechenzeiten Ri betragen jeweils (7, 3, 4).

Nehmen Sie an, dass ein Kontextwechsel eine Zeiteinheit benötigt. Die Aktivierung des
Schedulers kann in dieser Aufgabe vernachlässigt werden. Modellieren Sie den
Scheduler/Dispatcher als einen eigenständigen Prozess.

Skizzieren Sie unter diesen Annahmen den Ablauf der Prozesse in einem Gantt-Diagram für
folgende Schedulingstrategien.
Hinweis: Vernachlässigen Sie den initialen Kontextwechsel. Beginnen Sie im ersten Zeitslot
mit dem ersten rechnenden Prozess.

Mario Delic | Tutorübung | Übungswoche 3 6

Aufgabe 1a: First-Come-First-Served

FCFS: Non-preemptive, Prozesse werden in der Reihenfolge ihrer Ankunftszeiten
abgearbeitet.
P⃗ = (P1, P2, P3) → a⃗ = (0, 5, 2); r⃗ = (7, 3, 4)

Mario Delic | Tutorübung | Übungswoche 3 7

Aufgabe 1b: Shortest Remaining Time Next

SRTN: Preemptive, Auswahl des Prozesses mit der kürzesten verbleibenden Rechenzeit,
Unterbrechungen erfolgen nur beim Eintreffen eines neuen Prozesses.
P⃗ = (P1, P2, P3) → a⃗ = (0, 5, 2); r⃗ = (7, 3, 4)

Mario Delic | Tutorübung | Übungswoche 3 8

Aufgabe 1c: Round Robin

RR mit einem Zeitquantum von einer Zeiteinheit und zyklischer Abarbeitung der Prozesse
(statische Prioritäten, Sortierung nach der PID (=Index))
P⃗ = (P1, P2, P3) → a⃗ = (0, 5, 2); r⃗ = (7, 3, 4)

Mario Delic | Tutorübung | Übungswoche 3 9

Aufgabe 1d: Round Robin 2

RR mit einem Zeitquantum von 2 Zeiteinheiten und zyklischer Abarbeitung der Prozesse
(statische Prioritäten, Sortierung nach der PID (=Index)).
P⃗ = (P1, P2, P3) → a⃗ = (0, 5, 2); r⃗ = (7, 3, 4)

Mario Delic | Tutorübung | Übungswoche 3 10

Aufgabe 2: Priority RR Scheduling

Priorisiertes RR Verfahren:

• Zeitquantum q = 2 Zeitenheiten (ZE)

• Initialprioritäten (I1, I2, I3) = (10, 9, 14)
• Ankunftszeiten: (0, 2, 0)
• Rechenzeiten: (6, 6, 8)
• Bei I/O: Komplettunterbrechung für 5 ZE

Mario Delic | Tutorübung | Übungswoche 3 11

Aufgabe 2: Priority RR Scheduling

P⃗ = (P1, P2, P3) → I⃗ = (10, 9, 14); A⃗ = (0, 2, 0); R⃗ = (6, 6, 8)

Mario Delic | Tutorübung | Übungswoche 3 12

Aufgabe 2: Priority RR Scheduling

Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V für dieses Szenario.

W =
∑n

i=1 wi

n V =
∑n

i=1 vi

n

Mittlere Verweilzeit V : Mittlere Wartezeit W :

Mario Delic | Tutorübung | Übungswoche 3 13

Aufgabe 2: Priority RR Scheduling

Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V für dieses Szenario.

W =
∑n

i=1 wi

n V =
∑n

i=1 vi

n

Mittlere Verweilzeit V :
• v1: 20 Zeiteinheiten

• v2: 17 Zeiteinheiten

• v3: 15 Zeiteinheiten

• V = (20 + 17 + 15)/3 = 52/3 = 17, 33

Mittlere Wartezeit W :

Mario Delic | Tutorübung | Übungswoche 3 14

Aufgabe 2: Priority RR Scheduling

Berechnen Sie die mittlere Wartezeit W und die mittlere Verweilzeit V für dieses Szenario.

W =
∑n

i=1 wi

n V =
∑n

i=1 vi

n

Mittlere Verweilzeit V :
• v1: 20 Zeiteinheiten

• v2: 17 Zeiteinheiten

• v3: 15 Zeiteinheiten

• V = (20 + 17 + 15)/3 = 52/3 = 17, 33

Mittlere Wartezeit W :
• w1: 10 Zeiteinheiten

• w2: 12 Zeiteinheiten

• w3: 10 Zeiteinheiten

• W = (9 + 11 + 7)/3 = 27/3 = 9

Mario Delic | Tutorübung | Übungswoche 3 15

Aufgabe 3
Noch mehr C

a) Betrachten Sie die nachfolgende Implementierung einer Bibliotheksfunktion. Um welche
Funktion handelt es sich? Was ist natürlichsprachlich die Abbruchbedingung?

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(int)==4

Mario Delic | Tutorübung | Übungswoche 3 16

Aufgabe 3
Noch mehr C

a) Betrachten Sie die nachfolgende Implementierung einer Bibliotheksfunktion. Um welche
Funktion handelt es sich? Was ist natürlichsprachlich die Abbruchbedingung?

s und t sind Anfänge von strings. Der Funktion heißt strcpy(). Der string t wird Byte für Byte
in s kopiert.
Der return-value eines Assignemnts (=) ist das, was zugewiesen wurde. Die while-Schleife
terminiert also sobald ein NULL-Byte assigned wurde, sprich: das Ende des strings t
erreicht wurde.
Besser: char *strncpy(char *dest, const char *src, size_t n)

Mario Delic | Tutorübung | Übungswoche 3 17

Aufgabe 3
Noch mehr C

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(short)==2

Mario Delic | Tutorübung | Übungswoche 3 18

Aufgabe 3
Noch mehr C

b) Wie unterscheiden sich die folgenden Typdeklarationen? Es gilt: sizeof(void*)==8
und sizeof(short)==2

Alignment-Anforderungen führen zu Padding. Padding richtet sich nach dem größtem
Element des structs (hier: Pointer). Die Größe ist für beide structs identisch. Das Layout
im Speicher ist aber sehr wohl unterschiedlich. C sortiert die Elemente einer Struktur nicht
um. Es kann bei structs zu Problemen kommen, wenn Softwarekomponenten
verschiedene struct-Definitionen nutzen und Instanzen davon austauschen.

Mario Delic | Tutorübung | Übungswoche 3 19

Aufgabe 3
Noch mehr C

c) Betrachten Sie folgendes C-Programm, welches die n-te harmonische Zahl
Hn = 1 + 1

2 + 1
3 + · · · + 1

n =
∑n

k=1
1
k berechnet.

Beschreiben Sie etwaige Programmierfehler, die im obigen Programm gemacht wurden
und erklären Sie kurz, wie sie sich auf das Programm auswirken.

Mario Delic | Tutorübung | Übungswoche 3 20

Aufgabe 3

Mario Delic | Tutorübung | Übungswoche 3 21

