
Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Grundlagen: Betriebssysteme und
Systemsoftware
Tutorübung

Mario Delic

Lehrstuhl für Connected Mobility
School of Computation, Information and Technology
Technische Universität München

Übungswoche 4

Scheduling
Ziele

• Generell: → Fairness, Balance

• Batch-Systeme: → Durchsatz, Ausführungszeit, CPU Belegung

• Interaktive Systeme: → Antwortzeit, Proportionalität

• Echtzeit: → Deadlines, Vorhersagbarkeit

Mario Delic | Tutorübung | Übungswoche 4 2

Scheduling
Scheduling-Ebenen

Aufrufhäufigkeit

• short-term scheduler (CPU scheduler) → Teilt Prozessen CPU zu

• medium-term scheduler → Teil vom swapping-Mechanismus

• long-term scheduler (Job Scheduler) → Scheduled die ready-Queue

Mario Delic | Tutorübung | Übungswoche 4 3

Scheduling
Varianten

• Time sharing (auch: time slicing) → Mehrere Aufträge teilen sich durch timeslices eine
Ressource gleichzeitig

• Space sharing (auch: space slicing) → Zusammenhängende Prozesse werden als ein
Auftrag zusammengefasst und bekommen eine Ressource bis zu Terminierung

• Gang Scheduling → Kombination: Zusammenhängede Prozesse werden als ein
Auftrag zusammengefasst (Gang), und teilen sich über timeslices mit anderen Gangs
eine Ressource

Mario Delic | Tutorübung | Übungswoche 4 4

Scheduling
Real World Constraints

• NUMA Systeme → Systeme, auf denen Speicherzugriffszeiten für Prozesse
unterschiedlich sind: Sinnvolle Platzierung der Prozesse auf jeweils geeigneten
Prozessoren ’nahe’ am relevanten Speicher (Verteilungsproblem)

• Energie → In Systemen mit begrenzter Energie muss sparsam und effizient
gescheduled werden z.B. Handys

• Hitze → Prozesse, die viel Wärme generieren sollten nicht auf Prozessoren
gescheduled werden, die gerade überhitzen

• Bottlenecks → Umgang mit Prozesses die viel und/oder andere Prozesse blockieren?

• Cache Lokalität → Sinnvolle Nutzung des Cache spart aufwendige
Speicherzugriffsoperationen und kann z.B. den Durchsatz erhöhen.
Vorhersage/Approximierung der Cache-Nutzung eines Programms?

Mario Delic | Tutorübung | Übungswoche 4 5

Aufgabe 1
User+Kernel Scheduling

Modellierung von Round Robin Scheduling für Kernel- als auch User-Level-Scheduler.

Kernel-Level Scheduler:
• Zeitquantum = 5 Zeiteinheiten

• Zyklische Abarbeitung nach Ankunftszeit

• Aktivierung des Kernel-Schedulers = 1
Zeiteinheit

• Kontextwechsel (Aktivierung des
Dispatchers) = 1 Zeiteinheit

User-Level Scheduler:
• Zeitquantum = 2 Zeiteinheiten

• Zyklische Abarbeitung nach Ankunftszeit

• Aktivierung des User-Schedulers =
vernachlässigbar

• Preemptive bei Ankunft neuer Threads

Kernel und User-Level-Scheduler schedulen ihre eigenen Threads unabhängig
voneinander!

Mario Delic | Tutorübung | Übungswoche 4 6

Aufgabe 1
User+Kernel Scheduling

Mario Delic | Tutorübung | Übungswoche 4 7

Aufgabe 1
User+Kernel Scheduling

Mario Delic | Tutorübung | Übungswoche 4 8

Aufgabe 2
Linux CFS

• Completely Fair Scheduler seit Version 2.6.23 (Jahr 2007) im Einsatz.

• Niceness: Wert im Intervall [-20;19]. Sagt aus, wie sehr ein Prozess seine CPU-Zeit an
andere Prozesse ’verschenkt’.
↪→ 0: neutral, 19: very nice, -20: very mean.

• Geringere niceness bedeutet höhere Priorität - und umgekehrt.

• Niceness < 0 setzen erfordert root-Rechte!

• Jedem niceness Wert ist ein Gewicht zugeordnet (siehe Array sched_prio)

• Dynamische Zeitscheiben/timeslices statt statische!

• rt (real runtime) = Rechenzeit des Prozesses.

• vt (virtual runtime) = mit Priorität verrechnete rt.

Mario Delic | Tutorübung | Übungswoche 4 9

Aufgabe 2

Prozess Rechenzeit Niceness Weight
1 20 0 1024
2 25 -5 3121
3 5 1 820
4 3 18 18
5 33 -10 9548

Formel für TimeSlice von i (zur Vereinfachung mit TL = 50):

TSi = TL ∗ wi∑n
j=1 wj

(1)

Formel für virtual runtime von i:

vti_new = vti_old + w0
wi

(rti_new − rti_old), mit w0 = 1024 (2)

Mario Delic | Tutorübung | Übungswoche 4 10

Aufgabe 2

Prozess Rechenzeit Niceness Weight
1 20 0 1024
2 25 -5 3121
3 5 1 820
4 3 18 18
5 33 -10 9548

Formel für TimeSlice von i (zur Vereinfachung mit TL = 50):

TSi = TL ∗ wi∑n
j=1 wj

(1)

Formel für virtual runtime von i:

vti_new = vti_old + w0
wi

(rti_new − rti_old), mit w0 = 1024 (2)

Mario Delic | Tutorübung | Übungswoche 4 10

Mario Delic | Tutorübung | Übungswoche 4 11

Mario Delic | Tutorübung | Übungswoche 4 11

Mario Delic | Tutorübung | Übungswoche 4 11

